NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 158 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ihnwhi Heo; Fan Jia; Sarah Depaoli – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The Bayesian piecewise growth model (PGM) is a useful class of models for analyzing nonlinear change processes that consist of distinct growth phases. In applications of Bayesian PGMs, it is important to accurately capture growth trajectories and carefully consider knot placements. The presence of missing data is another challenge researchers…
Descriptors: Bayesian Statistics, Goodness of Fit, Data Analysis, Models
J. E. Borgert – ProQuest LLC, 2024
Foundations of statistics research aims to establish fundamental principles guiding inference about populations under uncertainty. It is concerned with the process of learning from observations, notions of uncertainty and induction, and satisfying inferential objectives. The growing interest in predictive methods in high-stakes fields like…
Descriptors: Statistics, Research, Logical Thinking, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Han Du; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Real data are unlikely to be exactly normally distributed. Ignoring non-normality will cause misleading and unreliable parameter estimates, standard error estimates, and model fit statistics. For non-normal data, researchers have proposed a distributionally-weighted least squares (DLS) estimator to combines the normal theory based generalized…
Descriptors: Least Squares Statistics, Matrices, Statistical Distributions, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
XinXiu Yang – International Journal of Information and Communication Technology Education, 2024
The objective of this work is to predict the employment rate of students based on the information in the SSM (student status management) in colleges and universities. Firstly, the relevant content of SSM is introduced. Secondly, the BP (Back Propagation) neural network, the LM (Levenberg Marquardt) algorithm, and the BR (Bayesian Regularization)…
Descriptors: Prediction, Employment Patterns, College Students, Algorithms
Brian T. Keller; Craig K. Enders – Grantee Submission, 2023
A growing body of literature has focused on missing data methods that factorize the joint distribution into a part representing the analysis model of interest and a part representing the distributions of the incomplete predictors. Relatively little is known about the utility of this method for multilevel models with interactive effects. This study…
Descriptors: Data Analysis, Hierarchical Linear Modeling, Monte Carlo Methods, Bias
Ziqian Xu – Grantee Submission, 2022
With the prevalence of missing data in social science research, it is necessary to use methods for handling missing data. One framework in which data with missing values can still be used for parameter estimation is the Bayesian framework. In this tutorial, different missing data mechanisms including Missing Completely at Random, Missing at…
Descriptors: Research Problems, Bayesian Statistics, Structural Equation Models, Data Analysis
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Guleria, Pratiyush; Sood, Manu – Education and Information Technologies, 2023
Machine Learning concept learns from experiences, inferences and conceives complex queries. Machine learning techniques can be used to develop the educational framework which understands the inputs from students, parents and with intelligence generates the result. The framework integrates the features of Machine Learning (ML), Explainable AI (XAI)…
Descriptors: Artificial Intelligence, Career Counseling, Data Analysis, Employment Potential
Kaplan, David; Chen, Jianschen; Yavuz, Sinan; Lyu, Weicong – Grantee Submission, 2022
The purpose of this paper is to demonstrate and evaluate the use of "Bayesian dynamic borrowing"(Viele et al, in Pharm Stat 13:41-54, 2014) as a means of systematically utilizing historical information with specific applications to large-scale educational assessments. Dynamic borrowing via Bayesian hierarchical models is a special case…
Descriptors: Bayesian Statistics, Models, Prediction, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Hecht, Martin; Voelkle, Manuel C. – International Journal of Behavioral Development, 2021
The analysis of cross-lagged relationships is a popular approach in prevention research to explore the dynamics between constructs over time. However, a limitation of commonly used cross-lagged models is the requirement of equally spaced measurement occasions that prevents the usage of flexible longitudinal designs and complicates cross-study…
Descriptors: Models, Longitudinal Studies, Prevention, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Kaplan, David; Chen, Jianshen; Lyu, Weicong; Yavuz, Sinan – Large-scale Assessments in Education, 2023
The purpose of this paper is to extend and evaluate methods of "Bayesian historical borrowing" applied to longitudinal data with a focus on parameter recovery and predictive performance. Bayesian historical borrowing allows researchers to utilize information from previous data sources and to adjust the extent of borrowing based on the…
Descriptors: Bayesian Statistics, Longitudinal Studies, Children, Surveys
David Kaplan; Jianshen Chen; Weicong Lyu; Sinan Yavuz – Grantee Submission, 2023
The purpose of this paper is to extend and evaluate methods of "Bayesian historical borrowing" applied to longitudinal data with a focus on parameter recovery and predictive performance. Bayesian historical borrowing allows researchers to utilize information from previous data sources and to adjust the extent of borrowing based on the…
Descriptors: Bayesian Statistics, Longitudinal Studies, Children, Surveys
Peer reviewed Peer reviewed
Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Du, Han; Enders, Craig; Keller, Brian; Bradbury, Thomas N.; Karney, Benjamin R. – Grantee Submission, 2022
Missing data are exceedingly common across a variety of disciplines, such as educational, social, and behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to unobserved data is widespread in real data and has detrimental consequence. However, the existing MNAR-based methods have potential problems such as…
Descriptors: Bayesian Statistics, Data Analysis, Computer Simulation, Sample Size
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11