NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 193 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lu Qin; Shishun Zhao; Wenlai Guo; Tiejun Tong; Ke Yang – Research Synthesis Methods, 2024
The application of network meta-analysis is becoming increasingly widespread, and for a successful implementation, it requires that the direct comparison result and the indirect comparison result should be consistent. Because of this, a proper detection of inconsistency is often a key issue in network meta-analysis as whether the results can be…
Descriptors: Meta Analysis, Network Analysis, Bayesian Statistics, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Michael Nagel; Lukas Fischer; Tim Pawlowski; Augustin Kelava – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichlet-horseshoe, a new prior distribution that combines and expands on the concepts of the regularized horseshoe and the Dirichlet-Laplace priors, is a…
Descriptors: Bayesian Statistics, Regression (Statistics), Computation, Statistical Distributions
Sangbaek Park – ProQuest LLC, 2024
This dissertation used synthetic datasets, semi-synthetic datasets, and a real-world dataset from an educational intervention to compare the performance of 15 machine learning and multiple imputation methods to estimate the individual treatment effect (ITE). In addition, it examined the performance of five evaluation metrics that can be used to…
Descriptors: Artificial Intelligence, Computation, Evaluation Methods, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Jihong Zhang; Jonathan Templin; Xinya Liang – Journal of Educational Measurement, 2024
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Jeff Coon; Paulina N. Silva; Alexander Etz; Barbara W. Sarnecka – Journal of Cognition and Development, 2025
Bayesian methods offer many advantages when applied to psychological research, yet they may seem esoteric to researchers who are accustomed to traditional methods. This paper aims to lower the barrier of entry for developmental psychologists who are interested in using Bayesian methods. We provide worked examples of how to analyze common study…
Descriptors: Developmental Psychology, Bayesian Statistics, Research Methodology, Psychological Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a method for Bayesian structural equation modeling of sample correlation matrices as correlation structures. The method transforms the sample correlation matrix to an unbounded vector using the matrix logarithm function. Bayesian inference about the unbounded vector is performed assuming a multivariate-normal likelihood, with a mean…
Descriptors: Bayesian Statistics, Structural Equation Models, Correlation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
de Jong, Valentijn M. T.; Campbell, Harlan; Maxwell, Lauren; Jaenisch, Thomas; Gustafson, Paul; Debray, Thomas P. A. – Research Synthesis Methods, 2023
A common problem in the analysis of multiple data sources, including individual participant data meta-analysis (IPD-MA), is the misclassification of binary variables. Misclassification may lead to biased estimators of model parameters, even when the misclassification is entirely random. We aimed to develop statistical methods that facilitate…
Descriptors: Classification, Meta Analysis, Bayesian Statistics, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Kazuhiro; Zhang, Jihong – Journal of Educational Measurement, 2023
This study proposed Gibbs sampling algorithms for variable selection in a latent regression model under a unidimensional two-parameter logistic item response theory model. Three types of shrinkage priors were employed to obtain shrinkage estimates: double-exponential (i.e., Laplace), horseshoe, and horseshoe+ priors. These shrinkage priors were…
Descriptors: Algorithms, Simulation, Mathematics Achievement, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kazuhiro Yamaguchi – Journal of Educational and Behavioral Statistics, 2025
This study proposes a Bayesian method for diagnostic classification models (DCMs) for a partially known Q-matrix setting between exploratory and confirmatory DCMs. This Q-matrix setting is practical and useful because test experts have pre-knowledge of the Q-matrix but cannot readily specify it completely. The proposed method employs priors for…
Descriptors: Models, Classification, Bayesian Statistics, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Jona Lilienthal; Sibylle Sturtz; Christoph Schürmann; Matthias Maiworm; Christian Röver; Tim Friede; Ralf Bender – Research Synthesis Methods, 2024
In Bayesian random-effects meta-analysis, the use of weakly informative prior distributions is of particular benefit in cases where only a few studies are included, a situation often encountered in health technology assessment (HTA). Suggestions for empirical prior distributions are available in the literature but it is unknown whether these are…
Descriptors: Bayesian Statistics, Meta Analysis, Health Sciences, Technology
Huan Liu – ProQuest LLC, 2024
In many large-scale testing programs, examinees are frequently categorized into different performance levels. These classifications are then used to make high-stakes decisions about examinees in contexts such as in licensure, certification, and educational assessments. Numerous approaches to estimating the consistency and accuracy of this…
Descriptors: Classification, Accuracy, Item Response Theory, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Zhiyong Zhang; Lijuan Wang – Grantee Submission, 2024
In psychology, researchers are often interested in testing hypotheses about mediation, such as testing the presence of a mediation effect of a treatment (e.g., intervention assignment) on an outcome via a mediator. An increasingly popular approach to testing hypotheses is the Bayesian testing approach with Bayes factors (BFs). Despite the growing…
Descriptors: Sample Size, Bayesian Statistics, Programming Languages, Simulation
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13