Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 14 |
Descriptor
Bayesian Statistics | 14 |
Experiments | 14 |
Statistical Inference | 14 |
Probability | 7 |
Evaluation Methods | 5 |
Evaluation Problems | 5 |
Evidence | 5 |
Hypothesis Testing | 5 |
Measurement Techniques | 5 |
Misconceptions | 5 |
Predictive Measurement | 5 |
More ▼ |
Source
Author
Griffiths, Thomas L. | 2 |
Austerweil, Joseph L. | 1 |
Blei, David M. | 1 |
Botelho, A. F. | 1 |
Chater, Nick | 1 |
Cumming, Geoff | 1 |
Erickson, J. A. | 1 |
Gabriel, Stephanie | 1 |
Gagnon-Bartsch, J. A. | 1 |
Gebauer, Line | 1 |
Gershman, Samuel J. | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Research | 6 |
Reports - Evaluative | 4 |
Opinion Papers | 2 |
Dissertations/Theses -… | 1 |
Reports - Descriptive | 1 |
Education Level
Adult Education | 1 |
Preschool Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction
Gagnon-Bartsch, J. A.; Sales, A. C.; Wu, E.; Botelho, A. F.; Erickson, J. A.; Miratrix, L. W.; Heffernan, N. T. – Grantee Submission, 2019
Randomized controlled trials (RCTs) admit unconfounded design-based inference--randomization largely justifies the assumptions underlying statistical effect estimates--but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT non-participants. For example, data from A/B…
Descriptors: Randomized Controlled Trials, Educational Research, Prediction, Algorithms
Skewes, Joshua C.; Gebauer, Line – Journal of Autism and Developmental Disorders, 2016
Convergent research suggests that people with ASD have difficulties localizing sounds in space. These difficulties have implications for communication, the development of social behavior, and quality of life. Recently, a theory has emerged which treats perceptual symptoms in ASD as the product of impairments in implicit Bayesian inference; as…
Descriptors: Autism, Pervasive Developmental Disorders, Auditory Perception, Bayesian Statistics
Austerweil, Joseph L.; Griffiths, Thomas L. – Cognitive Psychology, 2011
Most psychological theories treat the features of objects as being fixed and immediately available to observers. However, novel objects have an infinite array of properties that could potentially be encoded as features, raising the question of how people learn which features to use in representing those objects. We focus on the effects of…
Descriptors: Visual Stimuli, Novelty (Stimulus Dimension), Bayesian Statistics, Learning
Kaplan, David – Society for Research on Educational Effectiveness, 2010
In recent years, attention in the education community has focused on the need for evidenced-based research, particularly educational policies and interventions that rest on "scientifically based research". The emphasis on scientifically based research in education has led to a corresponding increase in studies designed to provide strong warrants…
Descriptors: Evidence, Educational Research, Educational Policy, Models
Zhao, Yuan – ProQuest LLC, 2010
Learning a phonetic category (or any linguistic category) requires integrating different sources of information. A crucial unsolved problem for phonetic learning is how this integration occurs: how can we update our previous knowledge about a phonetic category as we hear new exemplars of the category? One model of learning is Bayesian Inference,…
Descriptors: Evidence, Cues, Phonetics, Prior Learning
Sobel, David M.; Munro, Sarah E. – Developmental Psychology, 2009
In 5 experiments the authors examined children's understanding of causal mechanisms and their reasoning about base rates across domains of knowledge. Experiment 1 showed that 3-year-olds interpret objects activating a machine differently from a novel agent liking each object; children are more likely to treat the latter as indicating the objects…
Descriptors: Statistical Inference, Inferences, Influences, Young Children
Maraun, Michael; Gabriel, Stephanie – Psychological Methods, 2010
In his article, "An Alternative to Null-Hypothesis Significance Tests," Killeen (2005) urged the discipline to abandon the practice of "p[subscript obs]"-based null hypothesis testing and to quantify the signal-to-noise characteristics of experimental outcomes with replication probabilities. He described the coefficient that he…
Descriptors: Hypothesis Testing, Statistical Inference, Probability, Statistical Significance
Gershman, Samuel J.; Blei, David M.; Niv, Yael – Psychological Review, 2010
A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They…
Descriptors: Conditioning, Statistical Inference, Inferences, Bayesian Statistics
Killeen, Peter R. – Psychological Methods, 2010
Lecoutre, Lecoutre, and Poitevineau (2010) have provided sophisticated grounding for "p[subscript rep]." Computing it precisely appears, fortunately, no more difficult than doing so approximately. Their analysis will help move predictive inference into the mainstream. Iverson, Wagenmakers, and Lee (2010) have also validated…
Descriptors: Replication (Evaluation), Measurement Techniques, Research Design, Research Methodology
Lecoutre, Bruno; Lecoutre, Marie-Paule; Poitevineau, Jacques – Psychological Methods, 2010
P. R. Killeen's (2005a) probability of replication ("p[subscript rep]") of an experimental result is the fiducial Bayesian predictive probability of finding a same-sign effect in a replication of an experiment. "p[subscript rep]" is now routinely reported in "Psychological Science" and has also begun to appear in…
Descriptors: Research Methodology, Guidelines, Probability, Computation
Iverson, Geoffrey J.; Wagenmakers, Eric-Jan; Lee, Michael D. – Psychological Methods, 2010
The purpose of the recently proposed "p[subscript rep]" statistic is to estimate the probability of concurrence, that is, the probability that a replicate experiment yields an effect of the same sign (Killeen, 2005a). The influential journal "Psychological Science" endorses "p[subscript rep]" and recommends its use…
Descriptors: Effect Size, Evaluation Methods, Probability, Experiments
Cumming, Geoff – Psychological Methods, 2010
This comment offers three descriptions of "p[subscript rep]" that start with a frequentist account of confidence intervals, draw on R. A. Fisher's fiducial argument, and do not make Bayesian assumptions. Links are described among "p[subscript rep]," "p" values, and the probability a confidence interval will capture…
Descriptors: Replication (Evaluation), Measurement Techniques, Research Methodology, Validity
Stevens, John R.; Taylor, Alan M. – Journal of Educational and Behavioral Statistics, 2009
Meta-analysis is a frequent tool among education and behavioral researchers to combine results from multiple experiments to arrive at a clear understanding of some effect of interest. One of the traditional assumptions in a meta-analysis is the independence of the effect sizes from the studies under consideration. This article presents a…
Descriptors: Meta Analysis, Vertical Organization, Effect Size, Computation