Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 10 |
Descriptor
Bayesian Statistics | 11 |
Factor Analysis | 11 |
Markov Processes | 11 |
Monte Carlo Methods | 8 |
Models | 5 |
Item Response Theory | 4 |
Structural Equation Models | 4 |
Computation | 3 |
Correlation | 3 |
Achievement Tests | 2 |
Data Analysis | 2 |
More ▼ |
Source
Author
Ansari, Asim | 1 |
Asparouhov, Tihomir | 1 |
Blömeke, Sigrid | 1 |
Braeken, Johan | 1 |
Cai, Li | 1 |
Chen, Po-Hsi | 1 |
Dardick, William R. | 1 |
Depaoli, Sarah | 1 |
Dey, Dipak K. | 1 |
Dube, Laurette | 1 |
Edwards, Michael C. | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 7 |
Opinion Papers | 2 |
Reports - Evaluative | 2 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Postsecondary Education | 2 |
Secondary Education | 2 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 4 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
More ▼ |
Audience
Location
Taiwan | 2 |
Botswana | 1 |
Canada | 1 |
Chile | 1 |
Georgia Republic | 1 |
Germany | 1 |
Malaysia | 1 |
Norway | 1 |
Philippines | 1 |
Poland | 1 |
Russia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Progress in International… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Feng, Xiang-Nan; Wu, Hao-Tian; Song, Xin-Yuan – Sociological Methods & Research, 2017
We consider an ordinal regression model with latent variables to investigate the effects of observable and latent explanatory variables on the ordinal responses of interest. Each latent variable is characterized by correlated observed variables through a confirmatory factor analysis model. We develop a Bayesian adaptive lasso procedure to conduct…
Descriptors: Bayesian Statistics, Regression (Statistics), Models, Observation
Dardick, William R.; Mislevy, Robert J. – Educational and Psychological Measurement, 2016
A new variant of the iterative "data = fit + residual" data-analytical approach described by Mosteller and Tukey is proposed and implemented in the context of item response theory psychometric models. Posterior probabilities from a Bayesian mixture model of a Rasch item response theory model and an unscalable latent class are expressed…
Descriptors: Bayesian Statistics, Probability, Data Analysis, Item Response Theory
MacLellan, Christopher J.; Liu, Ran; Koedinger, Kenneth R. – International Educational Data Mining Society, 2015
Additive Factors Model (AFM) and Performance Factors Analysis (PFA) are two popular models of student learning that employ logistic regression to estimate parameters and predict performance. This is in contrast to Bayesian Knowledge Tracing (BKT) which uses a Hidden Markov Model formalism. While all three models tend to make similar predictions,…
Descriptors: Factor Analysis, Regression (Statistics), Knowledge Level, Markov Processes
Muthen, Bengt; Asparouhov, Tihomir – Psychological Methods, 2012
This rejoinder discusses the general comments on how to use Bayesian structural equation modeling (BSEM) wisely and how to get more people better trained in using Bayesian methods. Responses to specific comments cover how to handle sign switching, nonconvergence and nonidentification, and prior choices in latent variable models. Two new…
Descriptors: Structural Equation Models, Bayesian Statistics, Factor Analysis, Statistical Analysis
MacCallum, Robert C.; Edwards, Michael C.; Cai, Li – Psychological Methods, 2012
Muthen and Asparouhov (2012) have proposed and demonstrated an approach to model specification and estimation in structural equation modeling (SEM) using Bayesian methods. Their contribution builds on previous work in this area by (a) focusing on the translation of conventional SEM models into a Bayesian framework wherein parameters fixed at zero…
Descriptors: Structural Equation Models, Bayesian Statistics, Computation, Expertise
Depaoli, Sarah – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Parameter recovery was assessed within mixture confirmatory factor analysis across multiple estimator conditions under different simulated levels of mixture class separation. Mixture class separation was defined in the measurement model (through factor loadings) and the structural model (through factor variances). Maximum likelihood (ML) via the…
Descriptors: Markov Processes, Factor Analysis, Statistical Bias, Evaluation Research
Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming – Applied Psychological Measurement, 2013
Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…
Descriptors: Item Response Theory, Models, Vertical Organization, Bayesian Statistics
Tchumtchoua, Sylvie; Dey, Dipak K. – Psychometrika, 2012
This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…
Descriptors: Factor Analysis, Bayesian Statistics, Behavioral Sciences, Social Sciences
Braeken, Johan; Blömeke, Sigrid – Assessment & Evaluation in Higher Education, 2016
Using data from the international Teacher Education and Development Study: Learning to Teach Mathematics (TEDS-M), the measurement equivalence of teachers' beliefs across countries is investigated for the case of "mathematics-as-a fixed-ability". Measurement equivalence is a crucial topic in all international large-scale assessments and…
Descriptors: Comparative Analysis, Bayesian Statistics, Test Bias, Teacher Education
Hoshino, Takahiro; Shigemasu, Kazuo – Applied Psychological Measurement, 2008
The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…
Descriptors: Monte Carlo Methods, Markov Processes, Factor Analysis, Computation

Ansari, Asim; Jedidi, Kamel; Dube, Laurette – Psychometrika, 2002
Developed Markov Chain Monte Carlo procedures to perform Bayesian inference, model checking, and model comparison in heterogeneous factor analysis. Tested the approach with synthetic data and data from a consumption emotion study involving 54 consumers. Results show that traditional psychometric methods cannot fully capture the heterogeneity in…
Descriptors: Bayesian Statistics, Equations (Mathematics), Factor Analysis, Markov Processes