Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 4 |
| Since 2017 (last 10 years) | 14 |
| Since 2007 (last 20 years) | 25 |
Descriptor
| Bayesian Statistics | 27 |
| Hypothesis Testing | 27 |
| Statistical Inference | 18 |
| Probability | 14 |
| Inferences | 9 |
| Evaluation Methods | 7 |
| Experiments | 7 |
| Comparative Analysis | 6 |
| Measurement Techniques | 6 |
| Misconceptions | 6 |
| Replication (Evaluation) | 6 |
| More ▼ | |
Source
Author
| Griffiths, Thomas L. | 2 |
| Austerweil, Joseph L. | 1 |
| Blokpoel, Mark | 1 |
| Brauer, Jonathan R. | 1 |
| Brownstein, Naomi | 1 |
| Cohen, Allan S. | 1 |
| Cousineau, Denis | 1 |
| Cumming, Geoff | 1 |
| Day, Jacob C. | 1 |
| Deke, John | 1 |
| Douven, Igor | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 25 |
| Reports - Research | 12 |
| Reports - Descriptive | 6 |
| Reports - Evaluative | 6 |
| Guides - Non-Classroom | 2 |
| Opinion Papers | 2 |
| Speeches/Meeting Papers | 2 |
Education Level
| Higher Education | 4 |
| Postsecondary Education | 2 |
| Early Childhood Education | 1 |
| Elementary Education | 1 |
| Kindergarten | 1 |
| Primary Education | 1 |
Audience
| Researchers | 1 |
Location
| Wisconsin (Milwaukee) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Rosa W. Runhardt – Sociological Methods & Research, 2024
This article uses the interventionist theory of causation, a counterfactual theory taken from philosophy of science, to strengthen causal analysis in process tracing research. Causal claims from process tracing are re-expressed in terms of so-called hypothetical interventions, and concrete evidential tests are proposed which are shown to…
Descriptors: Causal Models, Statistical Inference, Intervention, Investigations
Li, Tenglong; Frank, Ken – Sociological Methods & Research, 2022
The internal validity of observational study is often subject to debate. In this study, we define the counterfactuals as the unobserved sample and intend to quantify its relationship with the null hypothesis statistical testing (NHST). We propose the probability of a robust inference for internal validity, that is, the PIV, as a robustness index…
Descriptors: Probability, Inferences, Validity, Correlation
Brauer, Jonathan R.; Day, Jacob C.; Hammond, Brittany M. – Sociological Methods & Research, 2021
This article presents two alternative methods to null hypothesis significance testing (NHST) for improving inferences from underpowered research designs. Post hoc design analysis (PHDA) assesses whether an NHST analysis generating null findings might otherwise have had sufficient power to detect effects of plausible magnitudes. Bayesian analysis…
Descriptors: Hypothesis Testing, Statistical Analysis, Bayesian Statistics, Statistical Significance
Austerweil, Joseph L.; Sanborn, Sophia; Griffiths, Thomas L. – Cognitive Science, 2019
Generalization is a fundamental problem solved by every cognitive system in essentially every domain. Although it is known that how people generalize varies in complex ways depending on the context or domain, it is an open question how people "learn" the appropriate way to generalize for a new context. To understand this capability, we…
Descriptors: Generalization, Logical Thinking, Inferences, Bayesian Statistics
Held, Leonhard; Matthews, Robert; Ott, Manuela; Pawel, Samuel – Research Synthesis Methods, 2022
It is now widely accepted that the standard inferential toolkit used by the scientific research community--null-hypothesis significance testing (NHST)--is not fit for purpose. Yet despite the threat posed to the scientific enterprise, there is no agreement concerning alternative approaches for evidence assessment. This lack of consensus reflects…
Descriptors: Bayesian Statistics, Statistical Inference, Hypothesis Testing, Credibility
Deke, John; Finucane, Mariel; Thal, Daniel – National Center for Education Evaluation and Regional Assistance, 2022
BASIE is a framework for interpreting impact estimates from evaluations. It is an alternative to null hypothesis significance testing. This guide walks researchers through the key steps of applying BASIE, including selecting prior evidence, reporting impact estimates, interpreting impact estimates, and conducting sensitivity analyses. The guide…
Descriptors: Bayesian Statistics, Educational Research, Data Interpretation, Hypothesis Testing
Norouzian, Reza; de Miranda, Michael; Plonsky, Luke – Modern Language Journal, 2019
Null hypothesis testing has long since been the 'go-to analytic approach' in quantitative second language (L2) research (Norris, 2015, p. 97). To many, however, years of reliance on this approach has resulted in a crisis of inference across the social and behavioral sciences (e.g., Rouder et al., 2016). As an alternative to the null hypothesis…
Descriptors: Bayesian Statistics, Second Language Learning, Second Language Instruction, Hypothesis Testing
Patriota, Alexandre Galvão – Educational and Psychological Measurement, 2017
Bayesian and classical statistical approaches are based on different types of logical principles. In order to avoid mistaken inferences and misguided interpretations, the practitioner must respect the inference rules embedded into each statistical method. Ignoring these principles leads to the paradoxical conclusions that the hypothesis…
Descriptors: Hypothesis Testing, Bayesian Statistics, Statistical Inference, Statistical Analysis
Marmolejo-Ramos, Fernando; Cousineau, Denis – Educational and Psychological Measurement, 2017
The number of articles showing dissatisfaction with the null hypothesis statistical testing (NHST) framework has been progressively increasing over the years. Alternatives to NHST have been proposed and the Bayesian approach seems to have achieved the highest amount of visibility. In this last part of the special issue, a few alternative…
Descriptors: Hypothesis Testing, Bayesian Statistics, Evaluation Methods, Statistical Inference
Douven, Igor; Mirabile, Patricia – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2018
There is a wealth of evidence that people's reasoning is influenced by explanatory considerations. Little is known, however, about the exact form this influence takes, for instance about whether the influence is unsystematic or because of people's following some rule. Three experiments investigate the descriptive adequacy of a precise proposal to…
Descriptors: Probability, Bayesian Statistics, Hypothesis Testing, Thinking Skills
Page, Robert; Satake, Eiki – Journal of Education and Learning, 2017
While interest in Bayesian statistics has been growing in statistics education, the treatment of the topic is still inadequate in both textbooks and the classroom. Because so many fields of study lead to careers that involve a decision-making process requiring an understanding of Bayesian methods, it is becoming increasingly clear that Bayesian…
Descriptors: Probability, Bayesian Statistics, Hypothesis Testing, Statistical Inference
Trafimow, David – Educational and Psychological Measurement, 2017
There has been much controversy over the null hypothesis significance testing procedure, with much of the criticism centered on the problem of inverse inference. Specifically, p gives the probability of the finding (or one more extreme) given the null hypothesis, whereas the null hypothesis significance testing procedure involves drawing a…
Descriptors: Statistical Inference, Hypothesis Testing, Probability, Intervals
Blokpoel, Mark; Wareham, Todd; Haselager, Pim; Toni, Ivan; van Rooij, Iris – Journal of Problem Solving, 2018
The ability to generate novel hypotheses is an important problem-solving capacity of humans. This ability is vital for making sense of the complex and unfamiliar world we live in. Often, this capacity is characterized as an inference to the best explanation--selecting the "best" explanation from a given set of candidate hypotheses.…
Descriptors: Hypothesis Testing, Logical Thinking, Inferences, Computation
García-Pérez, Miguel A. – Educational and Psychological Measurement, 2017
Null hypothesis significance testing (NHST) has been the subject of debate for decades and alternative approaches to data analysis have been proposed. This article addresses this debate from the perspective of scientific inquiry and inference. Inference is an inverse problem and application of statistical methods cannot reveal whether effects…
Descriptors: Hypothesis Testing, Statistical Inference, Effect Size, Bayesian Statistics
Ross, Steven J.; Mackey, Beth – Language Learning, 2015
This chapter introduces three applications of Bayesian inference to common and novel issues in second language research. After a review of the critiques of conventional hypothesis testing, our focus centers on ways Bayesian inference can be used for dealing with missing data, for testing theory-driven substantive hypotheses without a default null…
Descriptors: Bayesian Statistics, Hypothesis Testing, Meta Analysis, Inferences
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
