Publication Date
In 2025 | 6 |
Since 2024 | 19 |
Since 2021 (last 5 years) | 50 |
Since 2016 (last 10 years) | 128 |
Since 2006 (last 20 years) | 240 |
Descriptor
Bayesian Statistics | 315 |
Item Response Theory | 315 |
Models | 120 |
Test Items | 90 |
Computation | 85 |
Monte Carlo Methods | 81 |
Simulation | 81 |
Markov Processes | 60 |
Comparative Analysis | 56 |
Maximum Likelihood Statistics | 51 |
Foreign Countries | 42 |
More ▼ |
Source
Author
Glas, Cees A. W. | 13 |
Fox, Jean-Paul | 10 |
Mislevy, Robert J. | 9 |
van der Linden, Wim J. | 7 |
Cohen, Allan S. | 6 |
Huang, Hung-Yu | 6 |
Kim, Seock-Ho | 6 |
McDermott, Paul A. | 6 |
Sinharay, Sandip | 6 |
de la Torre, Jimmy | 6 |
Wang, Chun | 5 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 3 |
Practitioners | 2 |
Students | 1 |
Location
Taiwan | 5 |
Trinidad and Tobago | 4 |
Brazil | 3 |
Germany | 3 |
Netherlands | 3 |
Canada | 2 |
Germany (Berlin) | 2 |
Norway | 2 |
United States | 2 |
Armenia | 1 |
Austria | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ken A. Fujimoto; Carl F. Falk – Educational and Psychological Measurement, 2024
Item response theory (IRT) models are often compared with respect to predictive performance to determine the dimensionality of rating scale data. However, such model comparisons could be biased toward nested-dimensionality IRT models (e.g., the bifactor model) when comparing those models with non-nested-dimensionality IRT models (e.g., a…
Descriptors: Item Response Theory, Rating Scales, Predictive Measurement, Bayesian Statistics
Jianbin Fu; TsungHan Ho; Xuan Tan – Practical Assessment, Research & Evaluation, 2025
Item parameter estimation using an item response theory (IRT) model with fixed ability estimates is useful in equating with small samples on anchor items. The current study explores the impact of three ability estimation methods (weighted likelihood estimation [WLE], maximum a posteriori [MAP], and posterior ability distribution estimation [PST])…
Descriptors: Item Response Theory, Test Items, Computation, Equated Scores
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Sooyong Lee; Suhwa Han; Seung W. Choi – Journal of Educational Measurement, 2024
Research has shown that multiple-indicator multiple-cause (MIMIC) models can result in inflated Type I error rates in detecting differential item functioning (DIF) when the assumption of equal latent variance is violated. This study explains how the violation of the equal variance assumption adversely impacts the detection of nonuniform DIF and…
Descriptors: Factor Analysis, Bayesian Statistics, Test Bias, Item Response Theory
Yamaguchi, Kazuhiro; Zhang, Jihong – Journal of Educational Measurement, 2023
This study proposed Gibbs sampling algorithms for variable selection in a latent regression model under a unidimensional two-parameter logistic item response theory model. Three types of shrinkage priors were employed to obtain shrinkage estimates: double-exponential (i.e., Laplace), horseshoe, and horseshoe+ priors. These shrinkage priors were…
Descriptors: Algorithms, Simulation, Mathematics Achievement, Bayesian Statistics
Huan Liu – ProQuest LLC, 2024
In many large-scale testing programs, examinees are frequently categorized into different performance levels. These classifications are then used to make high-stakes decisions about examinees in contexts such as in licensure, certification, and educational assessments. Numerous approaches to estimating the consistency and accuracy of this…
Descriptors: Classification, Accuracy, Item Response Theory, Decision Making
Paganin, Sally; Paciorek, Christopher J.; Wehrhahn, Claudia; Rodríguez, Abel; Rabe-Hesketh, Sophia; de Valpine, Perry – Journal of Educational and Behavioral Statistics, 2023
Item response theory (IRT) models typically rely on a normality assumption for subject-specific latent traits, which is often unrealistic in practice. Semiparametric extensions based on Dirichlet process mixtures (DPMs) offer a more flexible representation of the unknown distribution of the latent trait. However, the use of such models in the IRT…
Descriptors: Bayesian Statistics, Item Response Theory, Guidance, Evaluation Methods
Christine E. DeMars; Paulius Satkus – Educational and Psychological Measurement, 2024
Marginal maximum likelihood, a common estimation method for item response theory models, is not inherently a Bayesian procedure. However, due to estimation difficulties, Bayesian priors are often applied to the likelihood when estimating 3PL models, especially with small samples. Little focus has been placed on choosing the priors for marginal…
Descriptors: Item Response Theory, Statistical Distributions, Error of Measurement, Bayesian Statistics
Justin L. Kern – Journal of Educational and Behavioral Statistics, 2024
Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Generalization
Combs, Adam – Journal of Educational Measurement, 2023
A common method of checking person-fit in Bayesian item response theory (IRT) is the posterior-predictive (PP) method. In recent years, more powerful approaches have been proposed that are based on resampling methods using the popular L*[subscript z] statistic. There has also been proposed a new Bayesian model checking method based on pivotal…
Descriptors: Bayesian Statistics, Goodness of Fit, Evaluation Methods, Monte Carlo Methods
Joseph A. Rios; Jiayi Deng – Educational and Psychological Measurement, 2025
To mitigate the potential damaging consequences of rapid guessing (RG), a form of noneffortful responding, researchers have proposed a number of scoring approaches. The present simulation study examines the robustness of the most popular of these approaches, the unidimensional effort-moderated (EM) scoring procedure, to multidimensional RG (i.e.,…
Descriptors: Scoring, Guessing (Tests), Reaction Time, Item Response Theory
Anirudhan Badrinath; Zachary Pardos – Journal of Educational Data Mining, 2025
Bayesian Knowledge Tracing (BKT) is a well-established model for formative assessment, with optimization typically using expectation maximization, conjugate gradient descent, or brute force search. However, one of the flaws of existing optimization techniques for BKT models is convergence to undesirable local minima that negatively impact…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Problem Solving, Audience Response Systems
Bayesian Logistic Regression: A New Method to Calibrate Pretest Items in Multistage Adaptive Testing
TsungHan Ho – Applied Measurement in Education, 2023
An operational multistage adaptive test (MST) requires the development of a large item bank and the effort to continuously replenish the item bank due to concerns about test security and validity over the long term. New items should be pretested and linked to the item bank before being used operationally. The linking item volume fluctuations in…
Descriptors: Bayesian Statistics, Regression (Statistics), Test Items, Pretesting
Eray Selçuk; Ergül Demir – International Journal of Assessment Tools in Education, 2024
This research aims to compare the ability and item parameter estimations of Item Response Theory according to Maximum likelihood and Bayesian approaches in different Monte Carlo simulation conditions. For this purpose, depending on the changes in the priori distribution type, sample size, test length, and logistics model, the ability and item…
Descriptors: Item Response Theory, Item Analysis, Test Items, Simulation
Rehab AlHakmani; Yanyan Sheng – Large-scale Assessments in Education, 2024
The focus of this study is to use the mixture item response theory (MixIRT) model while implementing the no-U-turn sampler as a technique for investigating the presence of latent classes (i.e., subpopulations) among eighth-grade students who were administered TIMSS 2019 mathematics subtest in paper format from the gulf cooperation council (GCC)…
Descriptors: International Assessment, Item Response Theory, Grade 8, Middle School Students