NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Elementary and Secondary…1
What Works Clearinghouse Rating
Showing 1 to 15 of 604 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Alicia M. Chen; Andrew Palacci; Natalia Vélez; Robert D. Hawkins; Samuel J. Gershman – Cognitive Science, 2024
How do teachers learn about what learners already know? How do learners aid teachers by providing them with information about their background knowledge and what they find confusing? We formalize this collaborative reasoning process using a hierarchical Bayesian model of pedagogy. We then evaluate this model in two online behavioral experiments (N…
Descriptors: Bayesian Statistics, Models, Teaching Methods, Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Ken A. Fujimoto; Carl F. Falk – Educational and Psychological Measurement, 2024
Item response theory (IRT) models are often compared with respect to predictive performance to determine the dimensionality of rating scale data. However, such model comparisons could be biased toward nested-dimensionality IRT models (e.g., the bifactor model) when comparing those models with non-nested-dimensionality IRT models (e.g., a…
Descriptors: Item Response Theory, Rating Scales, Predictive Measurement, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Ihnwhi Heo; Fan Jia; Sarah Depaoli – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The Bayesian piecewise growth model (PGM) is a useful class of models for analyzing nonlinear change processes that consist of distinct growth phases. In applications of Bayesian PGMs, it is important to accurately capture growth trajectories and carefully consider knot placements. The presence of missing data is another challenge researchers…
Descriptors: Bayesian Statistics, Goodness of Fit, Data Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Jihong Zhang; Jonathan Templin; Xinya Liang – Journal of Educational Measurement, 2024
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Bartoš, František; Maier, Maximilian; Wagenmakers, Eric-Jan; Doucouliagos, Hristos; Stanley, T. D. – Research Synthesis Methods, 2023
Publication bias is a ubiquitous threat to the validity of meta-analysis and the accumulation of scientific evidence. In order to estimate and counteract the impact of publication bias, multiple methods have been developed; however, recent simulation studies have shown the methods' performance to depend on the true data generating process, and no…
Descriptors: Robustness (Statistics), Bayesian Statistics, Meta Analysis, Publications
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Yinghan; Wang, Shiyu – Journal of Educational and Behavioral Statistics, 2023
Attribute hierarchy, the underlying prerequisite relationship among attributes, plays an important role in applying cognitive diagnosis models (CDM) for designing efficient cognitive diagnostic assessments. However, there are limited statistical tools to directly estimate attribute hierarchy from response data. In this study, we proposed a…
Descriptors: Cognitive Measurement, Models, Bayesian Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Sooyong Lee; Suhwa Han; Seung W. Choi – Journal of Educational Measurement, 2024
Research has shown that multiple-indicator multiple-cause (MIMIC) models can result in inflated Type I error rates in detecting differential item functioning (DIF) when the assumption of equal latent variance is violated. This study explains how the violation of the equal variance assumption adversely impacts the detection of nonuniform DIF and…
Descriptors: Factor Analysis, Bayesian Statistics, Test Bias, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona – Interactive Learning Environments, 2023
The research of multi-category learning behaviors is a hot issue in interactive learning environment, and there are many challenges in data statistics and relationship modeling. We select the massive learning behaviors data of multiple periods and courses and study the decision application of regression analysis. First, based on the definition of…
Descriptors: Learning Analytics, Decision Making, Regression (Statistics), Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Hyemin Han; Kelsie J. Dawson – Journal of Moral Education, 2024
In the present study, we examined how the perceived attainability and relatability of moral exemplars predicted moral elevation and pleasantness among both adult and college student participants. Data collected from two experiments were analyzed with Bayesian multilevel modeling to explore which factors significantly predicted outcome variables at…
Descriptors: Moral Values, Prediction, Models, Behavior Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
Xiao Liu; Zhiyong Zhang; Lijuan Wang – Grantee Submission, 2022
Mediation analysis is widely used to study whether the effect of an independent variable on an outcome is transmitted through a mediator. Bayesian methods have become increasingly popular for mediation analysis. However, limited research has been done on formal Bayesian hypothesis testing of mediation. Although hypothesis testing using Bayes…
Descriptors: Bayesian Statistics, Hypothesis Testing, Mediation Theory, Vignettes
Peer reviewed Peer reviewed
Direct linkDirect link
Jansen, Katrin; Holling, Heinz – Research Synthesis Methods, 2023
In meta-analyses of rare events, it can be challenging to obtain a reliable estimate of the pooled effect, in particular when the meta-analysis is based on a small number of studies. Recent simulation studies have shown that the beta-binomial model is a promising candidate in this situation, but have thus far only investigated its performance in a…
Descriptors: Bayesian Statistics, Meta Analysis, Probability, Simulation
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  41