Publication Date
In 2025 | 2 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 49 |
Since 2016 (last 10 years) | 127 |
Since 2006 (last 20 years) | 262 |
Descriptor
Bayesian Statistics | 364 |
Probability | 364 |
Models | 119 |
Statistical Analysis | 71 |
Prediction | 58 |
Comparative Analysis | 46 |
Simulation | 46 |
Statistical Inference | 46 |
Inferences | 42 |
Classification | 41 |
Computation | 40 |
More ▼ |
Source
Author
Mislevy, Robert J. | 9 |
Griffiths, Thomas L. | 8 |
Wagenmakers, Eric-Jan | 7 |
Sinharay, Sandip | 6 |
Lee, Michael D. | 5 |
Tenenbaum, Joshua B. | 5 |
Gelman, Andrew | 4 |
Johnson, Matthew S. | 4 |
Levy, Roy | 4 |
Satake, Eiki | 4 |
Brown, Scott D. | 3 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 11 |
Teachers | 4 |
Practitioners | 3 |
Students | 1 |
Location
Australia | 8 |
Canada | 4 |
Brazil | 2 |
California | 2 |
France | 2 |
Spain | 2 |
United Kingdom (England) | 2 |
California (Santa Barbara) | 1 |
Chile | 1 |
Europe | 1 |
Germany | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Ong, Jia Hoong; Liu, Fang – Journal of Autism and Developmental Disorders, 2023
According to Bayesian/predictive coding models of autism, autistic individuals may have difficulties learning probabilistic cue-outcome associations, but empirical evidence has been mixed. The target cues used in previous studies were often straightforward and might not reflect real-life learning of such associations which requires learners to…
Descriptors: Autism Spectrum Disorders, Probability, Cues, Associative Learning
Jansen, Katrin; Holling, Heinz – Research Synthesis Methods, 2023
In meta-analyses of rare events, it can be challenging to obtain a reliable estimate of the pooled effect, in particular when the meta-analysis is based on a small number of studies. Recent simulation studies have shown that the beta-binomial model is a promising candidate in this situation, but have thus far only investigated its performance in a…
Descriptors: Bayesian Statistics, Meta Analysis, Probability, Simulation
Alari, Krissina M.; Kim, Steven B.; Wand, Jeffrey O. – Measurement in Physical Education and Exercise Science, 2021
There are two schools of thought in statistical analysis, frequentist, and Bayesian. Though the two approaches produce similar estimations and predictions in large-sample studies, their interpretations are different. Bland Altman analysis is a statistical method that is widely used for comparing two methods of measurement. It was originally…
Descriptors: Statistical Analysis, Bayesian Statistics, Measurement, Probability
Marchant, Nicolás; Quillien, Tadeg; Chaigneau, Sergio E. – Cognitive Science, 2023
The causal view of categories assumes that categories are represented by features and their causal relations. To study the effect of causal knowledge on categorization, researchers have used Bayesian causal models. Within that framework, categorization may be viewed as dependent on a likelihood computation (i.e., the likelihood of an exemplar with…
Descriptors: Classification, Bayesian Statistics, Causal Models, Evaluation Methods
Pilditch, Toby D.; Lagator, Sandra; Lagnado, David – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2021
How do we deal with unlikely witness testimonies? Whether in legal or everyday reasoning, corroborative evidence is generally considered a strong marker of support for the reported hypothesis. However, questions remain regarding how the prior probability, or base rate, of that hypothesis interacts with corroboration. Using a Bayesian network…
Descriptors: Evidence, Reliability, Logical Thinking, Probability
Jennifer L. Proper; Haitao Chu; Purvi Prajapati; Michael D. Sonksen; Thomas A. Murray – Research Synthesis Methods, 2024
Drug repurposing refers to the process of discovering new therapeutic uses for existing medicines. Compared to traditional drug discovery, drug repurposing is attractive for its speed, cost, and reduced risk of failure. However, existing approaches for drug repurposing involve complex, computationally-intensive analytical methods that are not…
Descriptors: Network Analysis, Meta Analysis, Prediction, Drug Therapy
Zheng, Rong; Busemeyer, Jerome R.; Nosofsky, Robert M. – Cognitive Science, 2023
Though individual categorization or decision processes have been studied separately in many previous investigations, few studies have investigated how they interact by using a two-stage task of first categorizing and then deciding. To address this issue, we investigated a categorization-decision task in two experiments. In both, participants were…
Descriptors: Classification, Decision Making, Task Analysis, Feedback (Response)
Raykov, Tenko; Doebler, Philipp; Marcoulides, George A. – Measurement: Interdisciplinary Research and Perspectives, 2022
This article is concerned with the large-sample parameter estimator behavior in applications of Bayesian confirmatory factor analysis in behavioral measurement. The property of strong convergence of the popular Bayesian posterior median estimator is discussed, which states numerical convergence with probability 1 of the resulting estimates to the…
Descriptors: Bayesian Statistics, Measurement Techniques, Correlation, Factor Analysis
Sinharay, Sandip; Johnson, Matthew S. – Journal of Educational and Behavioral Statistics, 2021
Score differencing is one of the six categories of statistical methods used to detect test fraud (Wollack & Schoenig, 2018) and involves the testing of the null hypothesis that the performance of an examinee is similar over two item sets versus the alternative hypothesis that the performance is better on one of the item sets. We suggest, to…
Descriptors: Probability, Bayesian Statistics, Cheating, Statistical Analysis
Sinharay, Sandip; Johnson, Matthew S. – Grantee Submission, 2021
Score differencing is one of six categories of statistical methods used to detect test fraud (Wollack & Schoenig, 2018) and involves the testing of the null hypothesis that the performance of an examinee is similar over two item sets versus the alternative hypothesis that the performance is better on one of the item sets. We suggest, to…
Descriptors: Probability, Bayesian Statistics, Cheating, Statistical Analysis
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Meyer, Joerg – Teaching Statistics: An International Journal for Teachers, 2020
Some situations are presented with perplexing properties, which become clearer by looking at contingency tables. This in turn leads to problems that can be solved using conditional frequencies and thus leading to the Bayes formula with natural frequencies or probabilities.
Descriptors: Bayesian Statistics, Teaching Methods, Probability, Mathematics Instruction
Sonu Jose – ProQuest LLC, 2020
Bayesian network is a probabilistic graphical model that has wide applications in various domains due to its peculiarity of knowledge representation and reasoning under uncertainty. This research aims at Bayesian network structure learning and how the learned model can be used for reasoning. Learning the structure of Bayesian network from data is…
Descriptors: Bayesian Statistics, Models, Simulation, Algorithms
Alvin Christian; Brian Jacob; John D. Singleton – Grantee Submission, 2025
Recent controversies have highlighted the importance of local school district governance, but little empirical evidence exists evaluating the quality of district policy makers or policies. In this paper, we take a novel approach to assessing school district decision making. We posit a model of rational decision making under uncertainty that…
Descriptors: School Districts, Decision Making, In Person Learning, COVID-19