Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 6 |
Descriptor
Bayesian Statistics | 6 |
Randomized Controlled Trials | 6 |
Statistical Inference | 6 |
Statistical Analysis | 4 |
Causal Models | 3 |
Comparative Analysis | 2 |
Educational Research | 2 |
Meta Analysis | 2 |
Research Problems | 2 |
Sample Size | 2 |
Statistical Bias | 2 |
More ▼ |
Author
Peng Ding | 2 |
Botelho, A. F. | 1 |
Erickson, J. A. | 1 |
Fan Li | 1 |
Gagnon-Bartsch, J. A. | 1 |
Heffernan, N. T. | 1 |
Held, Leonhard | 1 |
Luke W. Miratrix | 1 |
Matthews, Robert | 1 |
Miratrix, L. W. | 1 |
Ohmann, Christian | 1 |
More ▼ |
Publication Type
Reports - Research | 5 |
Journal Articles | 2 |
Collected Works - General | 1 |
Information Analyses | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Held, Leonhard; Matthews, Robert; Ott, Manuela; Pawel, Samuel – Research Synthesis Methods, 2022
It is now widely accepted that the standard inferential toolkit used by the scientific research community--null-hypothesis significance testing (NHST)--is not fit for purpose. Yet despite the threat posed to the scientific enterprise, there is no agreement concerning alternative approaches for evidence assessment. This lack of consensus reflects…
Descriptors: Bayesian Statistics, Statistical Inference, Hypothesis Testing, Credibility
Peng Ding; Luke W. Miratrix – Grantee Submission, 2019
For binary experimental data, we discuss randomization-based inferential procedures that do not need to invoke any modeling assumptions. We also introduce methods for likelihood and Bayesian inference based solely on the physical randomization without any hypothetical super population assumptions about the potential outcomes. These estimators have…
Descriptors: Causal Models, Statistical Inference, Randomized Controlled Trials, Bayesian Statistics
Gagnon-Bartsch, J. A.; Sales, A. C.; Wu, E.; Botelho, A. F.; Erickson, J. A.; Miratrix, L. W.; Heffernan, N. T. – Grantee Submission, 2019
Randomized controlled trials (RCTs) admit unconfounded design-based inference--randomization largely justifies the assumptions underlying statistical effect estimates--but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT non-participants. For example, data from A/B…
Descriptors: Randomized Controlled Trials, Educational Research, Prediction, Algorithms
Peng Ding; Fan Li – Grantee Submission, 2018
Inferring causal effects of treatments is a central goal in many disciplines. The potential outcomes framework is a main statistical approach to causal inference, in which a causal effect is defined as a comparison of the potential outcomes of the same units under different treatment conditions. Because for each unit at most one of the potential…
Descriptors: Attribution Theory, Causal Models, Statistical Inference, Research Problems
Society for Research on Educational Effectiveness, 2017
Bayesian statistical methods have become more feasible to implement with advances in computing but are not commonly used in educational research. In contrast to frequentist approaches that take hypotheses (and the associated parameters) as fixed, Bayesian methods take data as fixed and hypotheses as random. This difference means that Bayesian…
Descriptors: Bayesian Statistics, Educational Research, Statistical Analysis, Decision Making
Verde, Pablo E.; Ohmann, Christian – Research Synthesis Methods, 2015
Researchers may have multiple motivations for combining disparate pieces of evidence in a meta-analysis, such as generalizing experimental results or increasing the power to detect an effect that a single study is not able to detect. However, while in meta-analysis, the main question may be simple, the structure of evidence available to answer it…
Descriptors: Randomized Controlled Trials, Bayesian Statistics, Comparative Analysis, Evidence