NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 32 results Save | Export
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Martin-Fernandez, Manuel; Revuelta, Javier – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
This study compares the performance of two estimation algorithms of new usage, the Metropolis-Hastings Robins-Monro (MHRM) and the Hamiltonian MCMC (HMC), with two consolidated algorithms in the psychometric literature, the marginal likelihood via EM algorithm (MML-EM) and the Markov chain Monte Carlo (MCMC), in the estimation of multidimensional…
Descriptors: Bayesian Statistics, Item Response Theory, Models, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Soo; Suh, Youngsuk – Journal of Educational Measurement, 2018
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
Descriptors: Item Response Theory, Sample Size, Models, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Dardick, William R.; Mislevy, Robert J. – Educational and Psychological Measurement, 2016
A new variant of the iterative "data = fit + residual" data-analytical approach described by Mosteller and Tukey is proposed and implemented in the context of item response theory psychometric models. Posterior probabilities from a Bayesian mixture model of a Rasch item response theory model and an unscalable latent class are expressed…
Descriptors: Bayesian Statistics, Probability, Data Analysis, Item Response Theory
Lamsal, Sunil – ProQuest LLC, 2015
Different estimation procedures have been developed for the unidimensional three-parameter item response theory (IRT) model. These techniques include the marginal maximum likelihood estimation, the fully Bayesian estimation using Markov chain Monte Carlo simulation techniques, and the Metropolis-Hastings Robbin-Monro estimation. With each…
Descriptors: Item Response Theory, Monte Carlo Methods, Maximum Likelihood Statistics, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew – Journal of Educational and Behavioral Statistics, 2015
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Descriptors: Bayesian Statistics, Models, Sampling, Computation
Feng, Yuling – ProQuest LLC, 2013
Diagnostic classification models (DCMs) are structured latent class models widely discussed in the field of psychometrics. They model subjects' underlying attribute patterns and classify subjects into unobservable groups based on their mastery of attributes required to answer the items correctly. The effective implementation of DCMs depends…
Descriptors: Classification, Models, Psychometrics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kunina-Habenicht, Olga; Rupp, Andre A.; Wilhelm, Oliver – Journal of Educational Measurement, 2012
Using a complex simulation study we investigated parameter recovery, classification accuracy, and performance of two item-fit statistics for correct and misspecified diagnostic classification models within a log-linear modeling framework. The basic manipulated test design factors included the number of respondents (1,000 vs. 10,000), attributes (3…
Descriptors: Classification, Accuracy, Goodness of Fit, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fu, Jianbin; Zapata, Diego; Mavronikolas, Elia – ETS Research Report Series, 2014
Simulation or game-based assessments produce outcome data and process data. In this article, some statistical models that can potentially be used to analyze data from simulation or game-based assessments are introduced. Specifically, cognitive diagnostic models that can be used to estimate latent skills from outcome data so as to scale these…
Descriptors: Simulation, Evaluation Methods, Games, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Stewart, Wayne; Stewart, Sepideh – PRIMUS, 2014
For many scientists, researchers and students Markov chain Monte Carlo (MCMC) simulation is an important and necessary tool to perform Bayesian analyses. The simulation is often presented as a mathematical algorithm and then translated into an appropriate computer program. However, this can result in overlooking the fundamental and deeper…
Descriptors: Markov Processes, Monte Carlo Methods, College Mathematics, Mathematics Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Galyardt, April; Goldin, Ilya – Journal of Educational Data Mining, 2015
In educational technology and learning sciences, there are multiple uses for a predictive model of whether a student will perform a task correctly or not. For example, an intelligent tutoring system may use such a model to estimate whether or not a student has mastered a skill. We analyze the significance of data recency in making such…
Descriptors: Achievement Rating, Performance Based Assessment, Bayesian Statistics, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Dai, Yunyun – Applied Psychological Measurement, 2013
Mixtures of item response theory (IRT) models have been proposed as a technique to explore response patterns in test data related to cognitive strategies, instructional sensitivity, and differential item functioning (DIF). Estimation proves challenging due to difficulties in identification and questions of effect size needed to recover underlying…
Descriptors: Item Response Theory, Test Bias, Computation, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2013
Both testlet design and hierarchical latent traits are fairly common in educational and psychological measurements. This study aimed to develop a new class of higher order testlet response models that consider both local item dependence within testlets and a hierarchy of latent traits. Due to high dimensionality, the authors adopted the Bayesian…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kieftenbeld, Vincent; Natesan, Prathiba – Applied Psychological Measurement, 2012
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
Descriptors: Test Length, Markov Processes, Item Response Theory, Monte Carlo Methods
Previous Page | Next Page »
Pages: 1  |  2  |  3