NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations1
Showing 1 to 15 of 355 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jianbin Fu; TsungHan Ho; Xuan Tan – Practical Assessment, Research & Evaluation, 2025
Item parameter estimation using an item response theory (IRT) model with fixed ability estimates is useful in equating with small samples on anchor items. The current study explores the impact of three ability estimation methods (weighted likelihood estimation [WLE], maximum a posteriori [MAP], and posterior ability distribution estimation [PST])…
Descriptors: Item Response Theory, Test Items, Computation, Equated Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Milica Miocevic; Fayette Klaassen; Mariola Moeyaert; Gemma G. M. Geuke – Journal of Experimental Education, 2025
Mediation analysis in Single Case Experimental Designs (SCEDs) evaluates intervention mechanisms for individuals. Despite recent methodological developments, no clear guidelines exist for maximizing power to detect the indirect effect in SCEDs. This study compares frequentist and Bayesian methods, determining (1) minimum required sample size to…
Descriptors: Research Design, Mediation Theory, Statistical Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Alari, Krissina M.; Kim, Steven B.; Wand, Jeffrey O. – Measurement in Physical Education and Exercise Science, 2021
There are two schools of thought in statistical analysis, frequentist, and Bayesian. Though the two approaches produce similar estimations and predictions in large-sample studies, their interpretations are different. Bland Altman analysis is a statistical method that is widely used for comparing two methods of measurement. It was originally…
Descriptors: Statistical Analysis, Bayesian Statistics, Measurement, Probability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tan, Teck Kiang – Practical Assessment, Research & Evaluation, 2023
Researchers often have hypotheses concerning the state of affairs in the population from which they sampled their data to compare group means. The classical frequentist approach provides one way of carrying out hypothesis testing using ANOVA to state the null hypothesis that there is no difference in the means and proceed with multiple comparisons…
Descriptors: Comparative Analysis, Hypothesis Testing, Statistical Analysis, Guidelines
Sinharay, Sandip; Johnson, Matthew S. – Journal of Educational and Behavioral Statistics, 2021
Score differencing is one of the six categories of statistical methods used to detect test fraud (Wollack & Schoenig, 2018) and involves the testing of the null hypothesis that the performance of an examinee is similar over two item sets versus the alternative hypothesis that the performance is better on one of the item sets. We suggest, to…
Descriptors: Probability, Bayesian Statistics, Cheating, Statistical Analysis
Sinharay, Sandip; Johnson, Matthew S. – Grantee Submission, 2021
Score differencing is one of six categories of statistical methods used to detect test fraud (Wollack & Schoenig, 2018) and involves the testing of the null hypothesis that the performance of an examinee is similar over two item sets versus the alternative hypothesis that the performance is better on one of the item sets. We suggest, to…
Descriptors: Probability, Bayesian Statistics, Cheating, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Campbell, Harlan; de Jong, Valentijn M. T.; Maxwell, Lauren; Jaenisch, Thomas; Debray, Thomas P. A.; Gustafson, Paul – Research Synthesis Methods, 2021
Ideally, a meta-analysis will summarize data from several unbiased studies. Here we look into the less than ideal situation in which contributing studies may be compromised by non-differential measurement error in the exposure variable. Specifically, we consider a meta-analysis for the association between a continuous outcome variable and one or…
Descriptors: Error of Measurement, Meta Analysis, Bayesian Statistics, Statistical Analysis
Kenneth Tyler Wilcox; Ross Jacobucci; Zhiyong Zhang; Brooke A. Ammerman – Grantee Submission, 2023
Text is a burgeoning data source for psychological researchers, but little methodological research has focused on adapting popular modeling approaches for text to the context of psychological research. One popular measurement model for text, topic modeling, uses a latent mixture model to represent topics underlying a body of documents. Recently,…
Descriptors: Bayesian Statistics, Content Analysis, Undergraduate Students, Self Destructive Behavior
Andrew Gelman; Matthijs Vákár – Grantee Submission, 2021
It is not always clear how to adjust for control data in causal inference, balancing the goals of reducing bias and variance. We show how, in a setting with repeated experiments, Bayesian hierarchical modeling yields an adaptive procedure that uses the data to determine how much adjustment to perform. The result is a novel analysis with increased…
Descriptors: Bayesian Statistics, Statistical Analysis, Efficiency, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Varas, Inés M.; González, Jorge; Quintana, Fernando A. – Journal of Educational and Behavioral Statistics, 2020
Equating is a family of statistical models and methods used to adjust scores on different test forms so that they can be comparable and used interchangeably. Equated scores are obtained estimating the equating transformation function, which maps the scores on the scale of one test form into their equivalents on the scale of other one. All the…
Descriptors: Bayesian Statistics, Nonparametric Statistics, Equated Scores, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Roy; Xia, Yan; Green, Samuel B. – Educational and Psychological Measurement, 2021
A number of psychometricians have suggested that parallel analysis (PA) tends to yield more accurate results in determining the number of factors in comparison with other statistical methods. Nevertheless, all too often PA can suggest an incorrect number of factors, particularly in statistically unfavorable conditions (e.g., small sample sizes and…
Descriptors: Bayesian Statistics, Statistical Analysis, Factor Structure, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Bloome, Deirdre; Schrage, Daniel – Sociological Methods & Research, 2021
Causal analyses typically focus on average treatment effects. Yet for substantive research on topics like inequality, interest extends to treatments' distributional consequences. When individuals differ in their responses to treatment, three types of inequality may result. Treatment may shape inequalities between subgroups defined by pretreatment…
Descriptors: Regression (Statistics), Outcomes of Treatment, Statistical Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Bonifay, Wes; Depaoli, Sarah – Prevention Science, 2023
Statistical analysis of categorical data often relies on multiway contingency tables; yet, as the number of categories and/or variables increases, the number of table cells with few (or zero) observations also increases. Unfortunately, sparse contingency tables invalidate the use of standard goodness-of-fit statistics. Limited-information fit…
Descriptors: Bayesian Statistics, Programming Languages, Psychopathology, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hening – Research Synthesis Methods, 2023
Many statistical methods (estimators) are available for estimating the consensus value (or average effect) and heterogeneity variance in interlaboratory studies or meta-analyses. These estimators are all valid because they are developed from or supported by certain statistical principles. However, no estimator can be perfect and must have error or…
Descriptors: Statistical Analysis, Computation, Measurement Techniques, Meta Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  24