Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 9 |
Descriptor
Bayesian Statistics | 9 |
Markov Processes | 9 |
Structural Equation Models | 9 |
Monte Carlo Methods | 7 |
Computation | 5 |
Factor Analysis | 4 |
Error of Measurement | 3 |
Simulation | 3 |
Foreign Countries | 2 |
Item Response Theory | 2 |
Accountability | 1 |
More ▼ |
Source
Psychological Methods | 2 |
Applied Psychological… | 1 |
Educational Research and… | 1 |
Grantee Submission | 1 |
Higher Education Research and… | 1 |
Multivariate Behavioral… | 1 |
Psychometrika | 1 |
Structural Equation Modeling:… | 1 |
Author
Asparouhov, Tihomir | 1 |
Cai, Li | 1 |
Cvetkovski, Stefan | 1 |
Depaoli, Sarah | 1 |
Dunson, David B. | 1 |
Edwards, Michael C. | 1 |
Glas, Cees A. W. | 1 |
Haiyan Liu | 1 |
Hao Wu | 1 |
Hoshino, Takahiro | 1 |
Jorm, Anthony F. | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Evaluative | 3 |
Reports - Research | 3 |
Opinion Papers | 2 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 1 |
Audience
Location
Australia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions
Cvetkovski, Stefan; Jorm, Anthony F.; Mackinnon, Andrew J. – Higher Education Research and Development, 2018
Studies of psychological distress (PD) in university students have shown that they have high prevalence rates. These findings have raised concerns that PD may be leading to poorer student outcomes, such as elevated dropout rates. The aim of this study was to examine the association of PD in undergraduate university students with the competing…
Descriptors: Stress Variables, Foreign Countries, Undergraduate Students, National Surveys
Muthen, Bengt; Asparouhov, Tihomir – Psychological Methods, 2012
This rejoinder discusses the general comments on how to use Bayesian structural equation modeling (BSEM) wisely and how to get more people better trained in using Bayesian methods. Responses to specific comments cover how to handle sign switching, nonconvergence and nonidentification, and prior choices in latent variable models. Two new…
Descriptors: Structural Equation Models, Bayesian Statistics, Factor Analysis, Statistical Analysis
MacCallum, Robert C.; Edwards, Michael C.; Cai, Li – Psychological Methods, 2012
Muthen and Asparouhov (2012) have proposed and demonstrated an approach to model specification and estimation in structural equation modeling (SEM) using Bayesian methods. Their contribution builds on previous work in this area by (a) focusing on the translation of conventional SEM models into a Bayesian framework wherein parameters fixed at zero…
Descriptors: Structural Equation Models, Bayesian Statistics, Computation, Expertise
Scheerens, Jaap; Luyten, Hans; van den Berg, Stéphanie M.; Glas, Cees A. W. – Educational Research and Evaluation, 2015
As expectations of the economic impact of educational attainment are soaring (Hanushek & Woessmann, 2009) and conjectures about successful national educational reforms (Mourshed, Chijioke, & Barber, 2010) are welcomed by educational policy-makers in many countries, a careful assessment of the empirical evidence for these kinds of claims is…
Descriptors: Foreign Countries, Educational Attainment, Educational Change, Comparative Education
Depaoli, Sarah – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Parameter recovery was assessed within mixture confirmatory factor analysis across multiple estimator conditions under different simulated levels of mixture class separation. Mixture class separation was defined in the measurement model (through factor loadings) and the structural model (through factor variances). Maximum likelihood (ML) via the…
Descriptors: Markov Processes, Factor Analysis, Statistical Bias, Evaluation Research
Yang, Mingan; Dunson, David B. – Psychometrika, 2010
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…
Descriptors: Structural Equation Models, Markov Processes, Item Response Theory, Bayesian Statistics
Hoshino, Takahiro; Shigemasu, Kazuo – Applied Psychological Measurement, 2008
The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…
Descriptors: Monte Carlo Methods, Markov Processes, Factor Analysis, Computation
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2006
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Descriptors: Structural Equation Models, Bayesian Statistics, Markov Processes, Monte Carlo Methods