Publication Date
In 2025 | 28 |
Since 2024 | 130 |
Since 2021 (last 5 years) | 408 |
Since 2016 (last 10 years) | 891 |
Since 2006 (last 20 years) | 1638 |
Descriptor
Bayesian Statistics | 2224 |
Models | 604 |
Probability | 364 |
Statistical Analysis | 355 |
Comparative Analysis | 328 |
Item Response Theory | 315 |
Computation | 307 |
Foreign Countries | 278 |
Simulation | 273 |
Monte Carlo Methods | 224 |
Prediction | 209 |
More ▼ |
Source
Author
Publication Type
Education Level
Location
Australia | 31 |
Germany | 20 |
United Kingdom (England) | 18 |
United States | 18 |
Canada | 17 |
Netherlands | 17 |
United Kingdom | 13 |
California | 12 |
Spain | 12 |
North Carolina | 11 |
Pennsylvania | 10 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 4 |
Individuals with Disabilities… | 2 |
Aid to Families with… | 1 |
Elementary and Secondary… | 1 |
Elementary and Secondary… | 1 |
Every Student Succeeds Act… | 1 |
Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations | 2 |
Does not meet standards | 1 |
Sonu Jose – ProQuest LLC, 2020
Bayesian network is a probabilistic graphical model that has wide applications in various domains due to its peculiarity of knowledge representation and reasoning under uncertainty. This research aims at Bayesian network structure learning and how the learned model can be used for reasoning. Learning the structure of Bayesian network from data is…
Descriptors: Bayesian Statistics, Models, Simulation, Algorithms
Lee, Morgan P.; Croteau, Ethan; Gurung, Ashish; Botelho, Anthony F.; Heffernan, Neil T. – International Educational Data Mining Society, 2023
The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the…
Descriptors: Bayesian Statistics, Models, Generalizability Theory, Longitudinal Studies
Van Lissa, Caspar J.; van Erp, Sara; Clapper, Eli-Boaz – Research Synthesis Methods, 2023
When meta-analyzing heterogeneous bodies of literature, meta-regression can be used to account for potentially relevant between-studies differences. A key challenge is that the number of candidate moderators is often high relative to the number of studies. This introduces risks of overfitting, spurious results, and model non-convergence. To…
Descriptors: Bayesian Statistics, Regression (Statistics), Maximum Likelihood Statistics, Meta Analysis
Man, Kaiwen; Harring, Jeffrey R. – Educational and Psychological Measurement, 2023
Preknowledge cheating jeopardizes the validity of inferences based on test results. Many methods have been developed to detect preknowledge cheating by jointly analyzing item responses and response times. Gaze fixations, an essential eye-tracker measure, can be utilized to help detect aberrant testing behavior with improved accuracy beyond using…
Descriptors: Cheating, Reaction Time, Test Items, Responses
Obeng, Asare Yaw – Cogent Education, 2023
The learning processes have been significantly impacted by technology. Numerous learners have adopted technology-based learning systems as the preferred form of learning. It is then necessary to identify the learning styles of learners to deliver appropriate resources, engage them, increase their motivation, and enhance their satisfaction and…
Descriptors: Predictor Variables, Cognitive Style, Electronic Learning, College Freshmen
Edelsbrunner, Peter A.; Flaig, Maja; Schneider, Michael – Journal of Research on Educational Effectiveness, 2023
Latent transition analysis is an informative statistical tool for depicting heterogeneity in learning as latent profiles. We present a Monte Carlo simulation study to guide researchers in selecting fit indices for identifying the correct number of profiles. We simulated data representing profiles of learners within a typical pre- post- follow…
Descriptors: Learning Processes, Profiles, Monte Carlo Methods, Bayesian Statistics
Hayes, Brett K.; Liew, Shi Xian; Desai, Saoirse Connor; Navarro, Danielle J.; Wen, Yuhang – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
The samples of evidence we use to make inferences in everyday and formal settings are often subject to selection biases. Two property induction experiments examined group and individual sensitivity to one type of selection bias: sampling frames - causal constraints that only allow certain types of instances to be sampled. Group data from both…
Descriptors: Logical Thinking, Inferences, Bias, Individual Differences
Hasan Aykut Karaboga; Ibrahim Demir – International Journal of Assessment Tools in Education, 2023
Bayesian Networks (BNs) are probabilistic graphical statistical models that have been widely used in many fields over the last decade. This method, which can also be used for educational data mining (EDM) purposes, is a fairly new method in education literature. This study models students' science success using the BN approach. Science is one of…
Descriptors: Bayesian Statistics, Science Achievement, Achievement Tests, International Assessment
Marcel R. Haas; Colin Caprani; Benji T. van Beurden – Journal of Learning Analytics, 2023
We present an innovative modelling technique that simultaneously constrains student performance, course difficulty, and the sensitivity with which a course can differentiate between students by means of grades. Grade lists are the only necessary ingredient. Networks of courses will be constructed where the edges are populations of students that…
Descriptors: Bayesian Statistics, Computer Software, Learning Analytics, Grades (Scholastic)
Kenneth Tyler Wilcox; Ross Jacobucci; Zhiyong Zhang; Brooke A. Ammerman – Grantee Submission, 2023
Text is a burgeoning data source for psychological researchers, but little methodological research has focused on adapting popular modeling approaches for text to the context of psychological research. One popular measurement model for text, topic modeling, uses a latent mixture model to represent topics underlying a body of documents. Recently,…
Descriptors: Bayesian Statistics, Content Analysis, Undergraduate Students, Self Destructive Behavior
Carlos Bazan – SAGE Open, 2023
University students represent a reservoir of entrepreneurial talent and an inherent source of creativity and innovation. One way to help unleash their talents as an engine of economic growth is by increasing our understanding of elements--internal or external, real or perceived--that lead to and influence the emergence of new ventures led by…
Descriptors: Entrepreneurship, Bayesian Statistics, College Environment, Career Guidance
Hsu, Chia-Ling; Chen, Yi-Hsin; Wu, Yi-Jhen – Practical Assessment, Research & Evaluation, 2023
Correct specifications of hierarchical attribute structures in analyses using diagnostic classification models (DCMs) are pivotal because misspecifications can lead to biased parameter estimations and inaccurate classification profiles. This research is aimed to demonstrate DCM analyses with various hierarchical attribute structures via Bayesian…
Descriptors: Bayesian Statistics, Computation, International Assessment, Achievement Tests
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis
Kara, Yusuf; Kamata, Akihito – Journal of Experimental Education, 2022
Within-cluster variance homogeneity is one of the key assumptions of multilevel models; however, assuming a constant (i.e. equal) within-cluster variance may not be realistic. Moreover, existent within-cluster variance heterogeneity should be regarded as a source of additional information rather than a violation of a model assumption. This study…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Item Response Theory, Multivariate Analysis
Carlon, May Kristine Jonson; Cross, Jeffrey S. – Open Education Studies, 2022
Adaptive learning is provided in intelligent tutoring systems (ITS) to enable learners with varying abilities to meet their expected learning outcomes. Despite the personalized learning afforded by ITSes using adaptive learning, learners are still susceptible to shallow learning. Introducing metacognitive tutoring to teach learners how to be aware…
Descriptors: Intelligent Tutoring Systems, Metacognition, Cognitive Processes, Difficulty Level