Publication Date
In 2025 | 28 |
Since 2024 | 130 |
Since 2021 (last 5 years) | 408 |
Since 2016 (last 10 years) | 891 |
Since 2006 (last 20 years) | 1638 |
Descriptor
Bayesian Statistics | 2224 |
Models | 604 |
Probability | 364 |
Statistical Analysis | 355 |
Comparative Analysis | 328 |
Item Response Theory | 315 |
Computation | 307 |
Foreign Countries | 278 |
Simulation | 273 |
Monte Carlo Methods | 224 |
Prediction | 209 |
More ▼ |
Source
Author
Publication Type
Education Level
Location
Australia | 31 |
Germany | 20 |
United Kingdom (England) | 18 |
United States | 18 |
Canada | 17 |
Netherlands | 17 |
United Kingdom | 13 |
California | 12 |
Spain | 12 |
North Carolina | 11 |
Pennsylvania | 10 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 4 |
Individuals with Disabilities… | 2 |
Aid to Families with… | 1 |
Elementary and Secondary… | 1 |
Elementary and Secondary… | 1 |
Every Student Succeeds Act… | 1 |
Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations | 2 |
Does not meet standards | 1 |
Jorge N. Tendeiro; Rink Hoekstra; Tsz Keung Wong; Henk A. L. Kiers – Teaching Statistics: An International Journal for Teachers, 2025
Most researchers receive formal training in frequentist statistics during their undergraduate studies. In particular, hypothesis testing is usually rooted on the null hypothesis significance testing paradigm and its p-value. Null hypothesis Bayesian testing and its so-called Bayes factor are now becoming increasingly popular. Although the Bayes…
Descriptors: Statistics Education, Teaching Methods, Programming Languages, Bayesian Statistics
Jeff Coon; Paulina N. Silva; Alexander Etz; Barbara W. Sarnecka – Journal of Cognition and Development, 2025
Bayesian methods offer many advantages when applied to psychological research, yet they may seem esoteric to researchers who are accustomed to traditional methods. This paper aims to lower the barrier of entry for developmental psychologists who are interested in using Bayesian methods. We provide worked examples of how to analyze common study…
Descriptors: Developmental Psychology, Bayesian Statistics, Research Methodology, Psychological Studies
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Qi, Hongchao; Rizopoulos, Dimitris; Rosmalen, Joost – Research Synthesis Methods, 2022
The meta-analytic-predictive (MAP) approach is a Bayesian meta-analytic method to synthesize and incorporate information from historical controls in the analysis of a new trial. Classically, only a single parameter, typically the intercept or rate, is assumed to vary across studies, which may not be realistic in more complex models. Analysis of…
Descriptors: Meta Analysis, Prediction, Correlation, Bayesian Statistics
McCluskey, Sydne – ProQuest LLC, 2023
Rater comparison analysis is commonly necessary in the social sciences. Conventional approaches to the problem generally focus on calculation of agreement statistics, which provide useful but incomplete information about rater agreement. Importantly, one-number agreement statistics give no indication regarding the nature of disagreements, nor do…
Descriptors: Bayesian Statistics, Structural Equation Models, Interrater Reliability, Beliefs
Bartoš, František; Maier, Maximilian; Wagenmakers, Eric-Jan; Doucouliagos, Hristos; Stanley, T. D. – Research Synthesis Methods, 2023
Publication bias is a ubiquitous threat to the validity of meta-analysis and the accumulation of scientific evidence. In order to estimate and counteract the impact of publication bias, multiple methods have been developed; however, recent simulation studies have shown the methods' performance to depend on the true data generating process, and no…
Descriptors: Robustness (Statistics), Bayesian Statistics, Meta Analysis, Publications
Chen, Yinghan; Wang, Shiyu – Journal of Educational and Behavioral Statistics, 2023
Attribute hierarchy, the underlying prerequisite relationship among attributes, plays an important role in applying cognitive diagnosis models (CDM) for designing efficient cognitive diagnostic assessments. However, there are limited statistical tools to directly estimate attribute hierarchy from response data. In this study, we proposed a…
Descriptors: Cognitive Measurement, Models, Bayesian Statistics, Computation
Milica Miocevic; Fayette Klaassen; Mariola Moeyaert; Gemma G. M. Geuke – Journal of Experimental Education, 2025
Mediation analysis in Single Case Experimental Designs (SCEDs) evaluates intervention mechanisms for individuals. Despite recent methodological developments, no clear guidelines exist for maximizing power to detect the indirect effect in SCEDs. This study compares frequentist and Bayesian methods, determining (1) minimum required sample size to…
Descriptors: Research Design, Mediation Theory, Statistical Analysis, Simulation
Adrian Quintero; Emmanuel Lesaffre; Geert Verbeke – Journal of Educational and Behavioral Statistics, 2024
Bayesian methods to infer model dimensionality in factor analysis generally assume a lower triangular structure for the factor loadings matrix. Consequently, the ordering of the outcomes influences the results. Therefore, we propose a method to infer model dimensionality without imposing any prior restriction on the loadings matrix. Our approach…
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Sampling
Rosa W. Runhardt – Sociological Methods & Research, 2024
This article uses the interventionist theory of causation, a counterfactual theory taken from philosophy of science, to strengthen causal analysis in process tracing research. Causal claims from process tracing are re-expressed in terms of so-called hypothetical interventions, and concrete evidential tests are proposed which are shown to…
Descriptors: Causal Models, Statistical Inference, Intervention, Investigations
Suzanne C. Freeman; Alex J. Sutton; Nicola J. Cooper; Alessandro Gasparini; Michael J. Crowther; Neil Hawkins – Research Synthesis Methods, 2024
Background: Traditionally, meta-analysis of time-to-event outcomes reports a single pooled hazard ratio assuming proportional hazards (PH). For health technology assessment evaluations, hazard ratios are frequently extrapolated across a lifetime horizon. However, when treatment effects vary over time, an assumption of PH is not always valid. The…
Descriptors: Cancer, Medical Research, Bayesian Statistics, Meta Analysis
Sooyong Lee; Suhwa Han; Seung W. Choi – Journal of Educational Measurement, 2024
Research has shown that multiple-indicator multiple-cause (MIMIC) models can result in inflated Type I error rates in detecting differential item functioning (DIF) when the assumption of equal latent variance is violated. This study explains how the violation of the equal variance assumption adversely impacts the detection of nonuniform DIF and…
Descriptors: Factor Analysis, Bayesian Statistics, Test Bias, Item Response Theory
Tutku Öztel; Fuat Balci – Cognitive Science, 2024
One of the most prominent social influences on human decision making is conformity, which is even more prominent when the perceptual information is ambiguous. The Bayes optimal solution to this problem entails weighting the relative reliability of cognitive information and perceptual signals in constructing the percept from self-sourced/endogenous…
Descriptors: Bayesian Statistics, Computation, Social Influences, Decision Making
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Ming-Chi Tseng – Structural Equation Modeling: A Multidisciplinary Journal, 2025
This study aims to estimate the latent interaction effect in the CLPM model through a two-step multiple imputation analysis. The estimation of within x within and between x within latent interaction under the CLPM model framework is compared between the one-step Bayesian LMS method and the two-step multiple imputation analysis through a simulation…
Descriptors: Guidelines, Bayesian Statistics, Self Esteem, Depression (Psychology)