NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Ding, Peng; Van der Weele, Tyler; Robins, James M. – Grantee Submission, 2017
Drawing causal inference with observational studies is the central pillar of many disciplines. One sufficient condition for identifying the causal effect is that the treatment-outcome relationship is unconfounded conditional on the observed covariates. It is often believed that the more covariates we condition on, the more plausible this…
Descriptors: Causal Models, Inferences, Outcomes of Treatment, Interaction
Ding, Peng; Dasgupta, Tirthankar – Grantee Submission, 2017
Fisher randomization tests for Neyman's null hypothesis of no average treatment effects are considered in a finite population setting associated with completely randomized experiments with more than two treatments. The consequences of using the F statistic to conduct such a test are examined both theoretically and computationally, and it is argued…
Descriptors: Statistical Analysis, Statistical Inference, Causal Models, Error Patterns
Lu, Jiannan; Ding, Peng; Dasgupta, Tirthankar – Journal of Educational and Behavioral Statistics, 2018
Assessing the causal effects of interventions on ordinal outcomes is an important objective of many educational and behavioral studies. Under the potential outcomes framework, we can define causal effects as comparisons between the potential outcomes under treatment and control. However, unfortunately, the average causal effect, often the…
Descriptors: Outcomes of Treatment, Mathematical Applications, Probability, Behavioral Science Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ding, Peng; Feller, Avi; Miratrix, Luke – Society for Research on Educational Effectiveness, 2015
Recent literature has underscored the critical role of treatment effect variation in estimating and understanding causal effects. This approach, however, is in contrast to much of the foundational research on causal inference. Linear models, for example, classically rely on constant treatment effect assumptions, or treatment effects defined by…
Descriptors: Causal Models, Randomized Controlled Trials, Statistical Analysis, Evaluation Methods