NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sanborn, Adam N.; Mansinghka, Vikash K.; Griffiths, Thomas L. – Psychological Review, 2013
People have strong intuitions about the influence objects exert upon one another when they collide. Because people's judgments appear to deviate from Newtonian mechanics, psychologists have suggested that people depend on a variety of task-specific heuristics. This leaves open the question of how these heuristics could be chosen, and how to…
Descriptors: Heuristics, Statistical Inference, Mechanics (Physics), Intuition
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Psychological Review, 2009
Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various settings, from diverse forms of data: observations…
Descriptors: Causal Models, Prior Learning, Logical Thinking, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Cognition, 2007
People's reactions to coincidences are often cited as an illustration of the irrationality of human reasoning about chance. We argue that coincidences may be better understood in terms of rational statistical inference, based on their functional role in processes of causal discovery and theory revision. We present a formal definition of…
Descriptors: Probability, Statistical Inference, Bayesian Statistics, Theories
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Cognitive Psychology, 2005
We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…
Descriptors: Probability, Logical Thinking, Inferences, Causal Models