NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kemp, Charles; Shafto, Patrick; Tenenbaum, Joshua B. – Cognitive Psychology, 2012
Humans routinely make inductive generalizations about unobserved features of objects. Previous accounts of inductive reasoning often focus on inferences about a single object or feature: accounts of causal reasoning often focus on a single object with one or more unobserved features, and accounts of property induction often focus on a single…
Descriptors: Generalization, Logical Thinking, Inferences, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Goodman, Noah D.; Ullman, Tomer D.; Tenenbaum, Joshua B. – Psychological Review, 2011
The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be…
Descriptors: Causal Models, Logical Thinking, Cognitive Development, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Psychological Review, 2009
Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various settings, from diverse forms of data: observations…
Descriptors: Causal Models, Prior Learning, Logical Thinking, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D.; Tenenbaum, Joshua B. – Cognition, 2008
Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates'…
Descriptors: Causal Models, Logical Thinking, Cognitive Psychology, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Krynski, Tevye R.; Tenenbaum, Joshua B. – Journal of Experimental Psychology: General, 2007
Leading accounts of judgment under uncertainty evaluate performance within purely statistical frameworks, holding people to the standards of classical Bayesian (A. Tversky & D. Kahneman, 1974) or frequentist (G. Gigerenzer & U. Hoffrage, 1995) norms. The authors argue that these frameworks have limited ability to explain the success and…
Descriptors: Inferences, Norms, Causal Models, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Cognition, 2007
People's reactions to coincidences are often cited as an illustration of the irrationality of human reasoning about chance. We argue that coincidences may be better understood in terms of rational statistical inference, based on their functional role in processes of causal discovery and theory revision. We present a formal definition of…
Descriptors: Probability, Statistical Inference, Bayesian Statistics, Theories
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Cognitive Psychology, 2005
We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…
Descriptors: Probability, Logical Thinking, Inferences, Causal Models