Publication Date
In 2025 | 1 |
Since 2024 | 14 |
Since 2021 (last 5 years) | 31 |
Since 2016 (last 10 years) | 51 |
Since 2006 (last 20 years) | 52 |
Descriptor
Source
Grantee Submission | 52 |
Author
Peng Ding | 5 |
Adam Sales | 3 |
Kenneth A. Frank | 3 |
Lijuan Wang | 3 |
Luke W. Miratrix | 3 |
Qinyun Lin | 3 |
Xu Qin | 3 |
Adam C. Sales | 2 |
Avi Feller | 2 |
Charlotte Z. Mann | 2 |
Ding, Peng | 2 |
More ▼ |
Publication Type
Reports - Research | 42 |
Journal Articles | 14 |
Speeches/Meeting Papers | 6 |
Reports - Descriptive | 4 |
Reports - Evaluative | 3 |
Dissertations/Theses -… | 1 |
Information Analyses | 1 |
Opinion Papers | 1 |
Reference Materials -… | 1 |
Education Level
High Schools | 4 |
Secondary Education | 4 |
Junior High Schools | 3 |
Middle Schools | 3 |
Elementary Education | 1 |
Grade 9 | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Florida | 1 |
North Carolina | 1 |
Tennessee | 1 |
Texas | 1 |
Laws, Policies, & Programs
Aid to Families with… | 1 |
Assessments and Surveys
Maslach Burnout Inventory | 1 |
What Works Clearinghouse Rating

Jason Schoeneberger; Christopher Rhoads – Grantee Submission, 2024
Regression discontinuity (RD) designs are increasingly used for causal evaluations. For example, if a student's need for a literacy intervention is determined by a low score on a past performance indicator and that intervention is provided to all students who fall below a cutoff on that indicator, an RD study can determine the intervention's main…
Descriptors: Regression (Statistics), Causal Models, Evaluation Methods, Multivariate Analysis
Sarah Narvaiz; Qinyun Lin; Joshua M. Rosenberg; Kenneth A. Frank; Spiro J. Maroulis; Wei Wang; Ran Xu – Grantee Submission, 2024
Sensitivity analysis, a statistical method crucial for validating inferences across disciplines, quantifies the conditions that could alter conclusions (Razavi et al., 2021). One line of work is rooted in linear models and foregrounds the sensitivity of inferences to the strength of omitted variables (Cinelli & Hazlett, 2019; Frank, 2000). A…
Descriptors: Statistical Analysis, Computer Software, Robustness (Statistics), Statistical Inference
Vivian C. Wong; Kylie Anglin; Peter M. Steiner – Grantee Submission, 2022
Recent interest in promoting replication efforts assumes that there is well-established methodological guidance for designing and implementing these studies. However, no such consensus exists in the methodology literature. This article addresses these challenges by describing design-based approaches for planning systematic replication studies. Our…
Descriptors: Replication (Evaluation), Causal Models, Research Design, Measurement
Guanglei Hong; Fan Yang; Xu Qin – Grantee Submission, 2023
In causal mediation studies that decompose an average treatment effect into indirect and direct effects, examples of post-treatment confounding are abundant. In the presence of treatment-by-mediator interactions, past research has generally considered it infeasible to adjust for a post-treatment confounder of the mediator-outcome relationship due…
Descriptors: Causal Models, Mediation Theory, Research Problems, Statistical Inference
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Ashley L. Watts; Ashley L. Greene; Wes Bonifay; Eiko L. Fried – Grantee Submission, 2023
The p-factor is a construct that is thought to explain and maybe even cause variation in all forms of psychopathology. Since its 'discovery' in 2012, hundreds of studies have been dedicated to the extraction and validation of statistical instantiations of the p-factor, called general factors of psychopathology. In this Perspective, we outline five…
Descriptors: Causal Models, Psychopathology, Goodness of Fit, Validity
Ruoxuan Li; Lijuan Wang – Grantee Submission, 2024
Causal-formative indicators are often used in social science research. To achieve identification in causal-formative indicator modeling, constraints need to be applied. A conventional method is to constrain the weight of a formative indicator to be 1. The selection of which indicator to have the fixed weight, however, may influence statistical…
Descriptors: Social Science Research, Causal Models, Formative Evaluation, Measurement
Ting Ye; Ted Westling; Lindsay Page; Luke Keele – Grantee Submission, 2024
The clustered observational study (COS) design is the observational study counterpart to the clustered randomized trial. In a COS, a treatment is assigned to intact groups, and all units within the group are exposed to the treatment. However, the treatment is non-randomly assigned. COSs are common in both education and health services research. In…
Descriptors: Nonparametric Statistics, Identification, Causal Models, Multivariate Analysis
Luke W. Miratrix – Grantee Submission, 2022
We are sometimes forced to use the Interrupted Time Series (ITS) design as an identification strategy for potential policy change, such as when we only have a single treated unit and cannot obtain comparable controls. For example, with recent county- and state-wide criminal justice reform efforts, where judicial bodies have changed bail setting…
Descriptors: Causal Models, Case Studies, Quasiexperimental Design, Monte Carlo Methods
Oscar Clivio; Avi Feller; Chris Holmes – Grantee Submission, 2024
Reweighting a distribution to minimize a distance to a target distribution is a powerful and flexible strategy for estimating a wide range of causal effects, but can be challenging in practice because optimal weights typically depend on knowledge of the underlying data generating process. In this paper, we focus on design-based weights, which do…
Descriptors: Evaluation Methods, Causal Models, Error of Measurement, Guidelines
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis
Adam C. Sales; Ethan Prihar; Johann Gagnon-Bartsch; Ashish Gurung; Neil T. Heffernan – Grantee Submission, 2022
Randomized A/B tests allow causal estimation without confounding but are often under-powered. This paper uses a new dataset, including over 250 randomized comparisons conducted in an online learning platform, to illustrate a method combining data from A/B tests with log data from users who were not in the experiment. Inference remains exact and…
Descriptors: Research Methodology, Educational Experiments, Causal Models, Computation
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Dae Woong Ham; Luke Miratrix – Grantee Submission, 2024
The consequence of a change in school leadership (e.g., principal turnover) on student achievement has important implications for education policy. The impact of such an event can be estimated via the popular Difference in Difference (DiD) estimator, where those schools with a turnover event are compared to a selected set of schools that did not…
Descriptors: Trend Analysis, Faculty Mobility, Academic Achievement, Principals
Xinxin Sun – Grantee Submission, 2023
Noncompliance to treatment assignment is widespread in randomized trials and presents challenges in causal inference. In the presence of noncompliance, the most commonly estimated effect of treatment assignment, also known as the intent-to-treat (ITT) effect, is biased. Of interest in this setting is the complier average causal effect (CACE), the…
Descriptors: Compliance (Psychology), Randomized Controlled Trials, Maximum Likelihood Statistics, Computation