NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis
Adam C. Sales; Ethan Prihar; Johann Gagnon-Bartsch; Ashish Gurung; Neil T. Heffernan – Grantee Submission, 2022
Randomized A/B tests allow causal estimation without confounding but are often under-powered. This paper uses a new dataset, including over 250 randomized comparisons conducted in an online learning platform, to illustrate a method combining data from A/B tests with log data from users who were not in the experiment. Inference remains exact and…
Descriptors: Research Methodology, Educational Experiments, Causal Models, Computation
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Avery H. Closser; Adam Sales; Anthony F. Botelho – Grantee Submission, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data on study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Avery H. Closser; Adam Sales; Anthony F. Botelho – Educational Technology Research and Development, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data to study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Wilhelmina van Dijk; Cynthia U. Norris; Sara A. Hart – Grantee Submission, 2022
Randomized control trials are considered the pinnacle for causal inference. In many cases, however, randomization of participants in social work research studies is not feasible or ethical. This paper introduces the co-twin control design study as an alternative quasi-experimental design to provide evidence of causal mechanisms when randomization…
Descriptors: Twins, Research Design, Randomized Controlled Trials, Quasiexperimental Design
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Motz, Benjamin A.; Carvalho, Paulo F.; de Leeuw, Joshua R.; Goldstone, Robert L. – Journal of Learning Analytics, 2018
To identify the ways teachers and educational systems can improve learning, researchers need to make causal inferences. Analyses of existing datasets play an important role in detecting causal patterns, but conducting experiments also plays an indispensable role in this research. In this article, we advocate for experiments to be embedded in real…
Descriptors: Causal Models, Statistical Inference, Inferences, Educational Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Shrout, Patrick E. – Multivariate Behavioral Research, 2011
Maxwell, Cole, and Mitchell (2011) extended the work of Maxwell and Cole (2007), which raised important questions about whether mediation analyses based on cross-sectional data can shed light on longitudinal mediation process. The latest article considers longitudinal processes that can only be partially explained by an intervening variable, and…
Descriptors: Causal Models, Psychopathology, Peer Mediation, Longitudinal Studies