Publication Date
In 2025 | 2 |
Since 2024 | 10 |
Since 2021 (last 5 years) | 24 |
Since 2016 (last 10 years) | 68 |
Since 2006 (last 20 years) | 134 |
Descriptor
Causal Models | 153 |
Statistical Analysis | 153 |
Correlation | 35 |
Foreign Countries | 32 |
Research Methodology | 25 |
Structural Equation Models | 24 |
Regression (Statistics) | 21 |
Comparative Analysis | 20 |
Research Design | 20 |
Statistical Inference | 20 |
Scores | 19 |
More ▼ |
Source
Author
Xu Qin | 4 |
Ding, Peng | 3 |
Peng Ding | 3 |
An, Weihua | 2 |
Charlotte Z. Mann | 2 |
Cook, Thomas D. | 2 |
Engelhard, George, Jr. | 2 |
Imbens, Guido W. | 2 |
Johann A. Gagnon-Bartsch | 2 |
Kenneth A. Frank | 2 |
Kowalski, Susan | 2 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 7 |
Policymakers | 1 |
Practitioners | 1 |
Teachers | 1 |
Location
Turkey | 8 |
China | 2 |
Germany | 2 |
Texas | 2 |
Turkey (Ankara) | 2 |
United States | 2 |
Asia | 1 |
Australia | 1 |
California | 1 |
Cameroon | 1 |
Canada | 1 |
More ▼ |
Laws, Policies, & Programs
Aid to Families with… | 1 |
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Xu Qin – Asia Pacific Education Review, 2024
Causal mediation analysis has gained increasing attention in recent years. This article guides empirical researchers through the concepts and challenges of causal mediation analysis. I first clarify the difference between traditional and causal mediation analysis and highlight the importance of adjusting for the treatment-by-mediator interaction…
Descriptors: Causal Models, Mediation Theory, Statistical Analysis, Computer Software
Sarah Narvaiz; Qinyun Lin; Joshua M. Rosenberg; Kenneth A. Frank; Spiro J. Maroulis; Wei Wang; Ran Xu – Grantee Submission, 2024
Sensitivity analysis, a statistical method crucial for validating inferences across disciplines, quantifies the conditions that could alter conclusions (Razavi et al., 2021). One line of work is rooted in linear models and foregrounds the sensitivity of inferences to the strength of omitted variables (Cinelli & Hazlett, 2019; Frank, 2000). A…
Descriptors: Statistical Analysis, Computer Software, Robustness (Statistics), Statistical Inference
Qian Zhang; Qi Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In the article, we focused on the issues of measurement error and omitted confounders while conducting mediation analysis under experimental studies. Depending on informativeness of the confounders between the mediator (M) and outcome (Y), we described two approaches. When researchers are confident that primary confounders are included (e.g.,…
Descriptors: Error of Measurement, Research and Development, Mediation Theory, Causal Models
Judith Glaesser – International Journal of Social Research Methodology, 2024
Causal asymmetry is a situation where the causal factors under study are more suitable for explaining the outcome than its absence (or vice versa); they do not explain both equally well. In such a situation, presence of a cause leads to presence of the effect, but absence of the cause may not lead to absence of the effect. A conceptual discussion…
Descriptors: Comparative Analysis, Causal Models, Correlation, Foreign Countries
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Bixi Zhang; Wolfgang Wiedermann – Society for Research on Educational Effectiveness, 2022
Background: Studying causal effects is an important aim in education. Causal relationships indicate how well implements (e.g., interventions) work for the target subjects. A good strategy to get the inference in such relationships is to conduct randomized experiments. However, random assignment is limited in education research, even is discouraged…
Descriptors: Statistical Analysis, Causal Models, Algorithms, Simulation
Heining Cham; Hyunjung Lee; Igor Migunov – Asia Pacific Education Review, 2024
The randomized control trial (RCT) is the primary experimental design in education research due to its strong internal validity for causal inference. However, in situations where RCTs are not feasible or ethical, quasi-experiments are alternatives to establish causal inference. This paper serves as an introduction to several quasi-experimental…
Descriptors: Causal Models, Educational Research, Quasiexperimental Design, Research Design
Guanglei Hong; Fan Yang; Xu Qin – Grantee Submission, 2023
In causal mediation studies that decompose an average treatment effect into indirect and direct effects, examples of post-treatment confounding are abundant. In the presence of treatment-by-mediator interactions, past research has generally considered it infeasible to adjust for a post-treatment confounder of the mediator-outcome relationship due…
Descriptors: Causal Models, Mediation Theory, Research Problems, Statistical Inference
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Peter Schochet – Society for Research on Educational Effectiveness, 2024
Random encouragement designs are randomized controlled trials (RCTs) that test interventions aimed at increasing participation in a program or activity whose take up is not universal. In these RCTs, instead of randomizing individuals or clusters directly into treatment and control groups to participate in a program or activity, the randomization…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Reichardt, Charles S. – American Journal of Evaluation, 2022
Evaluators are often called upon to assess the effects of programs. To assess a program effect, evaluators need a clear understanding of how a program effect is defined. Arguably, the most widely used definition of a program effect is the counterfactual one. According to the counterfactual definition, a program effect is the difference between…
Descriptors: Program Evaluation, Definitions, Causal Models, Evaluation Methods
Angrist, Joshua – National Bureau of Economic Research, 2022
The view that empirical strategies in economics should be transparent and credible now goes almost without saying. The local average treatment effects (LATE) framework for causal inference helped make this so. The LATE theorem tells us for whom particular instrumental variables (IV) and regression discontinuity estimates are valid. This lecture…
Descriptors: Economics, Statistical Analysis, Causal Models, Regression (Statistics)
Pósch, Krisztián – Sociological Methods & Research, 2021
Complex social scientific theories are conventionally tested using linear structural equation modeling (SEM). However, the underlying assumptions of linear SEM often prove unrealistic, making the decomposition of direct and indirect effects problematic. Recent advancements in causal mediation analysis can help to address these shortcomings,…
Descriptors: Social Theories, Causal Models, Structural Equation Models, Statistical Analysis
Hertog, Steffen – Sociological Methods & Research, 2023
In mixed methods approaches, statistical models are used to identify "nested" cases for intensive, small-n investigation for a range of purposes, including notably the examination of causal mechanisms. This article shows that under a commonsense interpretation of causal effects, large-n models allow no reliable conclusions about effect…
Descriptors: Case Studies, Generalization, Prediction, Mixed Methods Research
Yangqiuting Li; Chandralekha Singh – Physical Review Physics Education Research, 2024
Structural equation modeling (SEM) is a statistical method widely used in educational research to investigate relationships between variables. SEM models are typically constructed based on theoretical foundations and assessed through fit indices. However, a well-fitting SEM model alone is not sufficient to verify the causal inferences underlying…
Descriptors: Structural Equation Models, Statistical Analysis, Educational Research, Causal Models