Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 16 |
Descriptor
Chemical Engineering | 33 |
Computer Assisted Instruction | 33 |
Engineering Education | 18 |
Higher Education | 16 |
Teaching Methods | 16 |
Science Instruction | 15 |
College Science | 14 |
Science Education | 10 |
Chemistry | 9 |
Computer Uses in Education | 8 |
Computer Simulation | 7 |
More ▼ |
Source
Author
Falconer, John L. | 3 |
Al-Muhtaseb, Shaheen A. | 1 |
Ali, Emad | 1 |
Andrew R. Teixeira | 1 |
Baah, David | 1 |
Biasca, Karyn | 1 |
Biggs, Catherine A. | 1 |
Bonete, Pedro | 1 |
Bradley, James | 1 |
Brooks, Bill J. | 1 |
Cameron D. Armstrong | 1 |
More ▼ |
Publication Type
Journal Articles | 32 |
Reports - Descriptive | 19 |
Guides - Classroom - Teacher | 8 |
Reports - Research | 8 |
Computer Programs | 1 |
Guides - Non-Classroom | 1 |
Reports - Evaluative | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 15 |
Postsecondary Education | 13 |
Audience
Practitioners | 9 |
Teachers | 4 |
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Elkhatat, Ahmed M.; Al-Muhtaseb, Shaheen A. – Chemical Engineering Education, 2022
A Computer-Aided Learning Package as Inquiry-Guided Learning (CALP/IGL) was implemented in a cooling tower experiment for 43 students enrolled in four sections of the Unit Operations Laboratory course in the chemical engineering program at Qatar University. The impact of this approach on the attainment of learning outcomes was evaluated. Results…
Descriptors: Inquiry, Active Learning, Engineering Education, Computer Assisted Instruction
Chapman, Kayla E.; Davidson, Megan E.; Liberatore, Matthew W. – Chemical Engineering Education, 2021
Student success and attempts on hundreds of online homework problems housed in a fully interactive online textbook, Material and Energy Balances zyBook, were studied over three cohorts of students (n=284). Auto-graded homework questions with randomized numbers and content can explore proficiency in the course material. Students are allowed to…
Descriptors: Energy, Homework, Science Instruction, Textbooks
Falconer, John L.; Hendren, Neil – Chemical Engineering Education, 2021
A virtual catalytic reactor laboratory (VCRL) experiment, which can be used in most browsers, is described. Students select feed conditions and use the VCRL to take data for a gas-phase catalytic reaction and fit kinetic parameters to a Langmuir-Hinshelwood rate expression. The VCRL contains instructions, equipment descriptions, an animated…
Descriptors: Science Instruction, Computer Simulation, Laboratory Experiments, Laboratory Equipment
Jacob C. Crislip; Esai Lopez; Cameron D. Armstrong; Taylor Petell; Laila Abu-Lail; Andrew R. Teixeira – Advances in Engineering Education, 2023
A chemical engineering student's knowledge of theory, experimental design, and real-world processes is tested and enforced in the Unit Operations laboratory courses. However, instructors are facing challenges of delivering high-quality, hands-on laboratory content with limited resources and increasingly large class sizes. Limited in-lab time is…
Descriptors: College Students, Chemical Engineering, Science Laboratories, Computer Simulation
Falconer, John L. – Chemical Engineering Education, 2016
More than 40 interactive "Mathematica" simulations were prepared for chemical engineering thermodynamics, screencasts were prepared that explain how to use each simulation, and more than 100 ConcepTests were prepared that utilize the simulations. They are located on www.LearnChemE.com. The purposes of these simulations are to clarify…
Descriptors: Thermodynamics, Simulation, Chemical Engineering, Engineering Education
He, Q. Peter; Wang, Jin; Zhang, Rong; Johnson, Donald; Knight, Andrew; Polala, Ravali – Chemical Engineering Education, 2016
In view of potential demand for skilled engineers and competent researchers in the biofuels field, we have identified a significant gap between advanced biofuels research and undergraduate biofuels education in chemical engineering. To help bridge this gap, we created educational materials that systematically integrate biofuels technologies into…
Descriptors: Fuels, Teaching Methods, Researchers, Chemical Engineering
Wang, Shuo; Wang, Jing; Gao, Yanjing – Journal of Chemical Education, 2017
An open-source electrochemistry simulation package has been developed that simulates the electrode processes of four reaction mechanisms and two typical electroanalysis techniques: cyclic voltammetry and chronoamperometry. Unlike other open-source simulation software, this package balances the features with ease of learning and implementation and…
Descriptors: Open Source Technology, Computer Simulation, Chemistry, Graduate Students
Koretsky, Milo D.; Falconer, John L.; Brooks, Bill J.; Gilbuena, Debra M.; Silverstein, David L.; Smith, Christina; Miletic, Marina – Advances in Engineering Education, 2014
This paper describes the "AIChE Concept Warehouse," a recently developed web-based instructional tool that enables faculty within the discipline of chemical engineering to better provide their students concept-based instruction. It currently houses over 2,000 concept questions and 10 concept inventories pertinent to courses throughout…
Descriptors: Teaching Methods, Scientific Concepts, Educational Philosophy, Computer Assisted Instruction
Tudela, Ignacio; Bonete, Pedro; Fullana, Andres; Conesa, Juan Antonio – Journal of Chemical Education, 2011
The unreacted-core shrinking (UCS) model is employed to characterize fluid-particle reactions that are important in industry and research. An approach to understand the UCS model by numerical methods is presented, which helps the visualization of the influence of the variables that control the overall heterogeneous process. Use of this approach in…
Descriptors: Chemistry, Computer Assisted Instruction, Science Instruction, Chemical Engineering
Zualkernan, Imran A.; Husseini, Ghaleb A.; Loughlin, Kevin F.; Mohebzada, Jamshaid G.; El Gaml, Moataz – Chemical Engineering Education, 2013
Social networking platforms and computer games represent a natural informal learning environment for the current generation of learners in higher education. This paper explores the use of game-based learning in the context of an undergraduate chemical engineering remote laboratory. Specifically, students are allowed to manipulate chemical…
Descriptors: Social Networks, Chemical Engineering, Computer Games, Teaching Methods
Using Simulation Module, PCLAB, for Steady State Disturbance Sensitivity Analysis in Process Control
Ali, Emad; Idriss, Arimiyawo – Chemical Engineering Education, 2009
Recently, chemical engineering education moves towards utilizing simulation soft wares to enhance the learning process especially in the field of process control. These training simulators provide interactive learning through visualization and practicing which will bridge the gap between the theoretical abstraction of textbooks and the…
Descriptors: Engineering Education, Chemical Engineering, Computer Simulation, Science Instruction
Rossiter, Diane; Petrulis, Robert; Biggs, Catherine A. – Chemical Engineering Education, 2010
This paper describes the development of a first-year chemical engineering course over 5 years through action research based on evidence from student feedback. As a result of this research, the course has evolved into a blended approach which incorporates problem based learning (PBL) and online learning tools. Through the use of PBL, the students…
Descriptors: Electronic Learning, Feedback (Response), Action Research, Problem Based Learning
Clarke, Matthew A.; Giraldo, Carlos – Chemical Engineering Education, 2009
Chemical process simulation is one of the most fundamental skills that is expected from chemical engineers, yet relatively few graduates have the opportunity to learn, in depth, how a process simulator works, from programming the unit operations to the sequencing. The University of Calgary offers a "hands-on" postgraduate course in…
Descriptors: Computer Simulation, Chemical Engineering, Programming, Foreign Countries
Smith, Tamara Floyd; Baah, David; Bradley, James; Sidler, Michelle; Hall, Rosine; Daughtrey, Terrell; Curtis, Christine – Chemical Engineering Education, 2010
A Synchronous Distance Education (SDE) course, jointly offered by Auburn University, Tuskegee University and Auburn University at Montgomery, introduced non-science majors to the concepts of nanoscience. Lectures originated from each of the three campuses during the semester, and video conferencing equipment allowed students at all three campuses…
Descriptors: Distance Education, Synchronous Communication, Course Descriptions, Lecture Method
Savage, Phillip E. – Chemical Engineering Education, 2008
Students rarely see closed-form analytical rate equations derived from underlying chemical mechanisms that contain more than a few steps unless restrictive simplifying assumptions (e.g., existence of a rate-determining step) are made. Yet, work published decades ago allows closed-form analytical rate equations to be written quickly and easily for…
Descriptors: Equations (Mathematics), Algebra, Teaching Methods, Computation