NotesFAQContact Us
Collection
Advanced
Search Tips
Location
Mississippi1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Morgan I. D. Johnson; Lavinia Mbongo; Amy J. Managh – Journal of Chemical Education, 2023
An ICP-MS simulation was developed to support the teaching of inductively coupled plasma-mass spectrometry. The app enables students to conduct the quantification of selenium in a nutritional supplement, monitor the uptake of metallodrugs by cells, and perform qualitative analysis of gunshot residue. The experiments teach a range of analytical…
Descriptors: Computer Software, Undergraduate Study, College Science, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Thomas D. Varberg – Journal of Chemical Education, 2022
An experiment for the undergraduate physical chemistry laboratory is described in which the Raman spectrum of liquid "para"-difluorobenzene is recorded and assigned. A density functional theory (DFT) calculation of the 30 normal modes of the molecule is undertaken using computational chemistry software. Students use group theory to…
Descriptors: Undergraduate Students, Science Instruction, College Science, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Natalia Spitha; Yujian Zhang; Samuel Pazicni; Sarah A. Fullington; Carla Morais; Amanda Rae Buchberger; Pamela S. Doolittle – Chemistry Education Research and Practice, 2024
The Beer-Lambert law is a fundamental relationship in chemistry that helps connect macroscopic experimental observations (i.e., the amount of light exiting a solution sample) to a symbolic model composed of system-level parameters (e.g., concentration values). Despite the wide use of the Beer-Lambert law in the undergraduate chemistry curriculum…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, Scientific Principles
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Stelz-Sullivan, Eleanor J.; Marchetti, Barbara; Karsili, Tolga – Education Sciences, 2022
Computational and atmospheric chemistry are two important branches of contemporary chemistry. With the present topical nature of climate change and global warming, it is more crucial than ever that students are aware of and exposed to atmospheric chemistry, with an emphasis on how modeling may aid in understanding how atmospherically relevant…
Descriptors: Computation, Chemistry, Science Education, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Managh, Amy J.; Reid, Peter; Knox, Matthew A. – Journal of Chemical Education, 2018
A new app, freely available for Windows computers, has been developed to simulate tuning of an inductively coupled plasma mass spectrometer, on the basis of optimization data collected using a sector-field instrument. The app allows students to adjust parameters, including the torch position, gas flows, radio-frequency power, and guard-electrode…
Descriptors: Computer Oriented Programs, Computer Software, Computer Simulation, Spectroscopy
Peer reviewed Peer reviewed
Direct linkDirect link
Fisher, Aidan A.E. – Journal of Chemical Education, 2019
Computational approaches toward simulating chemical systems and evaluating experimental data has gathered great momentum in recent years. The onset of more powerful computers and advanced software has been instrumental to this end. This manuscript presents a hands-on activity which trains students in basic coding skills within the Matlab…
Descriptors: Computer Software, Chemistry, Quantum Mechanics, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Fuson, Michael M. – Journal of Chemical Education, 2017
Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…
Descriptors: College Science, Undergraduate Study, Chemistry, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Muelleman, Andrew W.; Glaser, Rainer E. – Journal of Chemical Education, 2018
Literacy requires reading comprehension, and fostering reading skills is an essential prerequisite to and a synergistic enabler of the development of writing skills. Reading comprehension in the chemical sciences not only consists of the understanding of text but also includes the reading and processing of data tables, schemes, and graphs. Thus,…
Descriptors: Chemistry, Science Instruction, Literacy, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Zoerb, Matthew C.; Harris, Charles B. – Journal of Chemical Education, 2013
A free program for the simulation of dynamic infrared (IR) spectra is presented. The program simulates the spectrum of two exchanging IR peaks based on simple input parameters. Larger systems can be simulated with minor modifications. The program is available as an executable program for PCs or can be run in MATLAB on any operating system. Source…
Descriptors: Science Instruction, College Science, Chemistry, Spectroscopy
Peer reviewed Peer reviewed
Direct linkDirect link
Ugone, Valeria; Garribba, Eugenio; Micera, Giovanni; Sanna, Daniele – Journal of Chemical Education, 2015
In this laboratory activity, the equilibrium between square pyramidal and octahedral V(IV)O[superscript 2+] complexes is described. We propose a set of experiments to synthesize and characterize two types of V(IV)O[superscript 2+] complexes. The experiment allows great flexibility and may be effectively used at a variety of levels and the activity…
Descriptors: Chemistry, Science Instruction, Science Experiments, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Marty, Michael T.; Beussman, Douglas J. – Journal of Chemical Education, 2013
An in-depth understanding of all parameters that affect an instrumental analysis method, allowing students to explore how these instruments work so that they are not just a "black box," is key to being able to optimize the technique and obtain the best possible results. It is, however, impractical to provide such in depth coverage of…
Descriptors: Science Instruction, College Science, Spectroscopy, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I. – Journal of Chemical Education, 2014
This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…
Descriptors: Undergraduate Students, Chemistry, Spectroscopy, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Bigger, Stephen W.; Bigger, Andrew S. – Journal of Chemical Education, 2013
The FluAnisot educational software package is a fully contained tutorial on the technique of fluorescence anisotropy measurement as well as a simulator on which two experiments can be performed. The procedure for each of the experiments is also contained within the package along with example analyses of results that were obtained using the…
Descriptors: Computer Software, Computer Uses in Education, Educational Technology, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Evans, Steven T.; Huang, Xinqun; Cramer, Steven M. – Chemical Engineering Education, 2010
The commercial simulator Aspen Chromatography was employed to study and optimize an important new industrial separation process, weak partitioning chromatography. This case study on antibody purification was implemented in a chromatographic separations course. Parametric simulations were performed to investigate the effect of operating parameters…
Descriptors: Computer Simulation, Biotechnology, Problem Based Learning, Courses
Peer reviewed Peer reviewed
Lim, Kieran F. – Journal of Chemical Education, 2005
A discussion on how a spreadsheet simulation of linear-molecular spectra could be used to explore the dependence of rotational band spacing and contours on average bond lengths in the initial and final quantum states is presented. The simulation of hydrogen chloride IR, iodine UV-vis, and nitrogen UV-vis spectra clearly show whether the average…
Descriptors: Chemistry, Computer Simulation, Science Education, Science Activities
Previous Page | Next Page ยป
Pages: 1  |  2