Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 14 |
Since 2006 (last 20 years) | 17 |
Descriptor
Source
Grantee Submission | 10 |
International Educational… | 3 |
International Journal of… | 1 |
Journal of Research in Reading | 1 |
Journal of Second Language… | 1 |
Language Testing | 1 |
Author
McNamara, Danielle S. | 17 |
Balyan, Renu | 7 |
Crossley, Scott A. | 6 |
McCarthy, Kathryn S. | 6 |
Allen, Laura K. | 4 |
Dascalu, Mihai | 4 |
Nicula, Bogdan | 3 |
Newton, Natalie | 2 |
Orcutt, Ellen | 2 |
Arner, Tracy | 1 |
Banawan, Michelle | 1 |
More ▼ |
Publication Type
Reports - Research | 16 |
Speeches/Meeting Papers | 10 |
Journal Articles | 7 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 5 |
Postsecondary Education | 5 |
High Schools | 3 |
Secondary Education | 2 |
Elementary Education | 1 |
Audience
Location
California | 1 |
Florida | 1 |
Hong Kong | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Flesch Kincaid Grade Level… | 3 |
Test of English as a Foreign… | 1 |
What Works Clearinghouse Rating
Christhilf, Katerina; Newton, Natalie; Butterfuss, Reese; McCarthy, Kathryn S.; Allen, Laura K.; Magliano, Joseph P.; McNamara, Danielle S. – International Educational Data Mining Society, 2022
Prompting students to generate constructed responses as they read provides a window into the processes and strategies that they use to make sense of complex text. In this study, Markov models examined the extent to which: (1) patterns of strategies; and (2) strategy combinations could be used to inform computational models of students' text…
Descriptors: Markov Processes, Reading Strategies, Reading Comprehension, Models
Crossley, Scott A.; Kim, Minkyung; Allen, Laura K.; McNamara, Danielle S. – Grantee Submission, 2019
Summarization is an effective strategy to promote and enhance learning and deep comprehension of texts. However, summarization is seldom implemented by teachers in classrooms because the manual evaluation of students' summaries requires time and effort. This problem has led to the development of automated models of summarization quality. However,…
Descriptors: Automation, Writing Evaluation, Natural Language Processing, Artificial Intelligence
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – International Journal of Artificial Intelligence in Education, 2020
For decades, educators have relied on readability metrics that tend to oversimplify dimensions of text difficulty. This study examines the potential of applying advanced artificial intelligence methods to the educational problem of assessing text difficulty. The combination of hierarchical machine learning and natural language processing (NLP) is…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Classification
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2020
For decades, educators have relied on readability metrics that tend to oversimplify dimensions of text difficulty. This study examines the potential of applying advanced artificial intelligence methods to the educational problem of assessing text difficulty. The combination of hierarchical machine learning and natural language processing (NLP) is…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Classification
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2018
While hierarchical machine learning approaches have been used to classify texts into different content areas, this approach has, to our knowledge, not been used in the automated assessment of text difficulty. This study compared the accuracy of four classification machine learning approaches (flat, one-vs-one, one-vs-all, and hierarchical) using…
Descriptors: Artificial Intelligence, Classification, Comparative Analysis, Prediction
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Open-ended comprehension questions are a common type of assessment used to evaluate how well students understand one of multiple documents. Our aim is to use natural language processing (NLP) to infer the level and type of inferencing within readers' answers to comprehension questions using linguistic and semantic features within their responses.…
Descriptors: Natural Language Processing, Taxonomy, Responses, Semantics
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie N.; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
Learning to paraphrase supports both writing ability and reading comprehension, particularly for less skilled learners. As such, educational tools that integrate automated evaluations of paraphrases can be used to provide timely feedback to enhance learner paraphrasing skills more efficiently and effectively. Paraphrase identification is a popular…
Descriptors: Computational Linguistics, Feedback (Response), Classification, Learning Processes
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
The ability to automatically assess the quality of paraphrases can be very useful for facilitating literacy skills and providing timely feedback to learners. Our aim is twofold: a) to automatically evaluate the quality of paraphrases across four dimensions: lexical similarity, syntactic similarity, semantic similarity and paraphrase quality, and…
Descriptors: Phrase Structure, Networks, Semantics, Feedback (Response)
Balyan, Renu; Arner, Tracy; Taylor, Karen; Shin, Jinnie; Banawan, Michelle; Leite, Walter L.; McNamara, Danielle S. – International Educational Data Mining Society, 2022
The National Council of Teachers of Mathematics (NCTM) has been emphasizing the importance of teachers' pedagogical communication as part of mathematical teaching and learning for decades. Specifically, NCTM has provided guidance on how teachers can foster mathematical communication that positively impacts student learning. A teacher may have…
Descriptors: Tutoring, Guidelines, Mathematics Instruction, Computer Assisted Instruction
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2017
This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…
Descriptors: Artificial Intelligence, Natural Language Processing, Reading Comprehension, Literature
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – International Educational Data Mining Society, 2017
This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…
Descriptors: Artificial Intelligence, Natural Language Processing, Reading Comprehension, Literature
Dascalu, Mihai; Allen, Laura K.; McNamara, Danielle S.; Trausan-Matu, Stefan; Crossley, Scott A. – Grantee Submission, 2017
Dialogism provides the grounds for building a comprehensive model of discourse and it is focused on the multiplicity of perspectives (i.e., voices). Dialogism can be present in any type of text, while voices become themes or recurrent topics emerging from the discourse. In this study, we examine the extent that differences between…
Descriptors: Dialogs (Language), Protocol Analysis, Discourse Analysis, Automation
Allen, Laura K.; Mills, Caitlin; Perret, Cecile; McNamara, Danielle S. – Grantee Submission, 2019
This study examines the extent to which instructions to self-explain vs. "other"-explain a text lead readers to produce different forms of explanations. Natural language processing was used to examine the content and characteristics of the explanations produced as a function of instruction condition. Undergraduate students (n = 146)…
Descriptors: Language Processing, Science Instruction, Computational Linguistics, Teaching Methods
Balyan, Renu; Crossley, Scott A.; Brown, William, III; Karter, Andrew J.; McNamara, Danielle S.; Liu, Jennifer Y.; Lyles, Courtney R.; Schillinger, Dean – Grantee Submission, 2019
Limited health literacy is a barrier to optimal healthcare delivery and outcomes. Current measures requiring patients to self-report limitations are time-consuming and may be considered intrusive by some. This makes widespread classification of patient health literacy challenging. The objective of this study was to develop and validate…
Descriptors: Patients, Literacy, Health Services, Profiles
Crossley, Scott A.; McNamara, Danielle S. – Journal of Research in Reading, 2012
This study addresses research gaps in predicting second language (L2) writing proficiency using linguistic features. Key to this analysis is the inclusion of linguistic measures at the surface, textbase and situation model level that assess text cohesion and linguistic sophistication. The results of this study demonstrate that five variables…
Descriptors: Writing Instruction, Familiarity, Second Language Learning, Word Frequency
Previous Page | Next Page ยป
Pages: 1 | 2