NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Anglin, Kylie; Boguslav, Arielle; Hall, Todd – Grantee Submission, 2020
Text classification has allowed researchers to analyze natural language data at a previously impossible scale. However, a text classifier is only as valid as the the annotations on which it was trained. Further, the cost of training a classifier depends on annotators' ability to quickly and accurately apply the coding scheme to each text. Thus,…
Descriptors: Documentation, Natural Language Processing, Classification, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Richie, Russell; Bhatia, Sudeep – Cognitive Science, 2021
Similarity is one of the most important relations humans perceive, arguably subserving category learning and categorization, generalization and discrimination, judgment and decision making, and other cognitive functions. Researchers have proposed a wide range of representations and metrics that could be at play in similarity judgment, yet have not…
Descriptors: Classification, Generalization, Decision Making, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Brendan Bartanen; Andrew Kwok; Andrew Avitabile; Brian Heseung Kim – Grantee Submission, 2025
Heightened concerns about the health of the teaching profession highlight the importance of studying the early teacher pipeline. This exploratory, descriptive article examines preservice teachers' expressed motivation for pursuing a teaching career. Using data from a large teacher education program in Texas, we use a natural language processing…
Descriptors: Career Choice, Teaching (Occupation), Teacher Education Programs, Preservice Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Christopher Dann; Petrea Redmond; Melissa Fanshawe; Alice Brown; Seyum Getenet; Thanveer Shaik; Xiaohui Tao; Linda Galligan; Yan Li – Australasian Journal of Educational Technology, 2024
Making sense of student feedback and engagement is important for informing pedagogical decision-making and broader strategies related to student retention and success in higher education courses. Although learning analytics and other strategies are employed within courses to understand student engagement, the interpretation of data for larger data…
Descriptors: Artificial Intelligence, Learner Engagement, Feedback (Response), Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Brandon Sepulvado; Jennifer Hamilton – Society for Research on Educational Effectiveness, 2021
Background: Traditional survey efforts to gather outcome data at scale have significant limitations, including cost, time, and respondent burden. This pilot study explored new and innovative large-scale methods of collecting and validating data from publicly available sources. Taking advantage of emerging data science techniques, we leverage…
Descriptors: Automation, Data Collection, Data Analysis, Validity
Marilena Panaite; Mihai Dascalu; Amy Johnson; Renu Balyan; Jianmin Dai; Danielle S. McNamara; Stefan Trausan-Matu – Grantee Submission, 2018
Intelligent Tutoring Systems (ITSs) are aimed at promoting acquisition of knowledge and skills by providing relevant and appropriate feedback during students' practice activities. ITSs for literacy instruction commonly assess typed responses using Natural Language Processing (NLP) algorithms. One step in this direction often requires building a…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Algorithms, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Anglin, Kylie L. – Journal of Research on Educational Effectiveness, 2019
Education researchers have traditionally faced severe data limitations in studying local policy variation; administrative data sets capture only a fraction of districts' policy decisions, and it can be expensive to collect more nuanced implementation data from teachers and leaders. Natural language processing and web-scraping techniques can help…
Descriptors: Natural Language Processing, Educational Policy, Web Sites, Decision Making
Anglin, Kylie L. – Grantee Submission, 2019
Education researchers have traditionally faced severe data limitations in studying local policy variation; administrative datasets capture only a fraction of districts' policy decisions, and it can be expensive to collect more nuanced implementation data from teachers and leaders. Natural language processing and web-scraping techniques can help…
Descriptors: Natural Language Processing, Educational Policy, Web Sites, Decision Making
ElMessiry, Adel Magdi – ProQuest LLC, 2016
Complaining is a fundamental human characteristic that has prevailed throughout the ages. We normally complain about something that went wrong. Patient complaints are no exception; they focus on problems that occurred during the episode of care. The Institute of Medicine estimated that each year thousands of patients die due to medical errors. The…
Descriptors: Patients, Health Services, Medical Services, Hospitals
International Association for Development of the Information Society, 2012
The IADIS CELDA 2012 Conference intention was to address the main issues concerned with evolving learning processes and supporting pedagogies and applications in the digital age. There had been advances in both cognitive psychology and computing that have affected the educational arena. The convergence of these two disciplines is increasing at a…
Descriptors: Academic Achievement, Academic Persistence, Academic Support Services, Access to Computers