NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Location
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Meng Qiu; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage…
Descriptors: Classification, Sample Size, Monte Carlo Methods, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Najera, Hector – Measurement: Interdisciplinary Research and Perspectives, 2023
Measurement error affects the quality of population orderings of an index and, hence, increases the misclassification of the poor and the non-poor groups and affects statistical inferences from binary regression models. Hence, the conclusions about the extent, profile, and distribution of poverty are likely to be misleading. However, the size and…
Descriptors: Poverty, Error of Measurement, Classification, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Sedat Sen; Allan S. Cohen – Educational and Psychological Measurement, 2024
A Monte Carlo simulation study was conducted to compare fit indices used for detecting the correct latent class in three dichotomous mixture item response theory (IRT) models. Ten indices were considered: Akaike's information criterion (AIC), the corrected AIC (AICc), Bayesian information criterion (BIC), consistent AIC (CAIC), Draper's…
Descriptors: Goodness of Fit, Item Response Theory, Sample Size, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Xiaoqing; Wu, Haotian; Feng, Xiangnan; Song, Xinyuan – Sociological Methods & Research, 2021
Given the questionnaire design and the nature of the problem, partially ordered data that are neither completely ordered nor completely unordered are frequently encountered in social, behavioral, and medical studies. However, early developments in partially ordered data analysis are very limited and restricted only to cross-sectional data. In this…
Descriptors: Bayesian Statistics, Health Behavior, Smoking, Case Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Kazuhiro – Journal of Educational and Behavioral Statistics, 2023
Understanding whether or not different types of students master various attributes can aid future learning remediation. In this study, two-level diagnostic classification models (DCMs) were developed to represent the probabilistic relationship between external latent classes and attribute mastery patterns. Furthermore, variational Bayesian (VB)…
Descriptors: Bayesian Statistics, Classification, Statistical Inference, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Frermann, Lea; Lapata, Mirella – Cognitive Science, 2016
Models of category learning have been extensively studied in cognitive science and primarily tested on perceptual abstractions or artificial stimuli. In this paper, we focus on categories acquired from natural language stimuli, that is, words (e.g., "chair" is a member of the furniture category). We present a Bayesian model that, unlike…
Descriptors: Classification, Bayesian Statistics, Models, Cognitive Science
Peer reviewed Peer reviewed
Direct linkDirect link
Koziol, Natalie A. – Applied Measurement in Education, 2016
Testlets, or groups of related items, are commonly included in educational assessments due to their many logistical and conceptual advantages. Despite their advantages, testlets introduce complications into the theory and practice of educational measurement. Responses to items within a testlet tend to be correlated even after controlling for…
Descriptors: Classification, Accuracy, Comparative Analysis, Models
Feng, Yuling – ProQuest LLC, 2013
Diagnostic classification models (DCMs) are structured latent class models widely discussed in the field of psychometrics. They model subjects' underlying attribute patterns and classify subjects into unobservable groups based on their mastery of attributes required to answer the items correctly. The effective implementation of DCMs depends…
Descriptors: Classification, Models, Psychometrics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Mossman, Douglas; Wygant, Dustin B.; Gervais, Roger O. – Psychological Assessment, 2012
Psychologists frequently use symptom validity tests (SVTs) to help determine whether evaluees' test performance or reported symptoms accurately represent their true functioning and capability. Most studies evaluating the accuracy of SVTs have used either known-group comparisons or simulation designs, but these approaches have well-known…
Descriptors: Accuracy, Classification, Validity, Psychological Testing
Md Desa, Zairul Nor Deana – ProQuest LLC, 2012
In recent years, there has been increasing interest in estimating and improving subscore reliability. In this study, the multidimensional item response theory (MIRT) and the bi-factor model were combined to estimate subscores, to obtain subscores reliability, and subscores classification. Both the compensatory and partially compensatory MIRT…
Descriptors: Item Response Theory, Computation, Reliability, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
DeCarlo, Lawrence T. – Applied Psychological Measurement, 2011
Cognitive diagnostic models (CDMs) attempt to uncover latent skills or attributes that examinees must possess in order to answer test items correctly. The DINA (deterministic input, noisy "and") model is a popular CDM that has been widely used. It is shown here that a logistic version of the model can easily be fit with standard software for…
Descriptors: Bayesian Statistics, Computation, Cognitive Tests, Diagnostic Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Sanborn, Adam N.; Griffiths, Thomas L.; Navarro, Daniel J. – Psychological Review, 2010
Rational models of cognition typically consider the abstract computational problems posed by the environment, assuming that people are capable of optimally solving those problems. This differs from more traditional formal models of cognition, which focus on the psychological processes responsible for behavior. A basic challenge for rational models…
Descriptors: Models, Cognitive Processes, Psychology, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Iliopoulos, G.; Kateri, M.; Ntzoufras, I. – Psychometrika, 2009
Association models constitute an attractive alternative to the usual log-linear models for modeling the dependence between classification variables. They impose special structure on the underlying association by assigning scores on the levels of each classification variable, which can be fixed or parametric. Under the general row-column (RC)…
Descriptors: Markov Processes, Classification, Bayesian Statistics, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Ruscio, John – Assessment, 2009
Determining whether individuals belong to different latent classes (taxa) or vary along one or more latent factors (dimensions) has implications for assessment. For example, no instrument can simultaneously maximize the efficiency of categorical and continuous measurement. Methods such as taxometric analysis can test the relative fit of taxonic…
Descriptors: Classification, Measurement, Measurement Techniques, Evaluation Research