Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 17 |
Since 2006 (last 20 years) | 24 |
Descriptor
Source
Author
McNamara, Danielle S. | 3 |
Barnes, Tiffany, Ed. | 2 |
Desmarais, Michel, Ed. | 2 |
Alice Brown | 1 |
Allen, Laura K. | 1 |
Amy M. Johnson | 1 |
Andrew Avitabile | 1 |
Andrew Kwok | 1 |
Balyan, Renu | 1 |
Bhatia, Sudeep | 1 |
Brandt, Steffen | 1 |
More ▼ |
Publication Type
Reports - Research | 14 |
Speeches/Meeting Papers | 8 |
Journal Articles | 7 |
Collected Works - Proceedings | 5 |
Dissertations/Theses -… | 4 |
Numerical/Quantitative Data | 1 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Australia | 3 |
Pennsylvania | 3 |
Brazil | 2 |
Israel | 2 |
Netherlands | 2 |
Spain | 2 |
Asia | 1 |
California | 1 |
China | 1 |
Connecticut | 1 |
Czech Republic | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Flesch Kincaid Grade Level… | 1 |
Graduate Record Examinations | 1 |
Massachusetts Comprehensive… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Jionghao Lin; Wei Tan; Lan Du; Wray Buntine; David Lang; Dragan Gasevic; Guanliang Chen – IEEE Transactions on Learning Technologies, 2024
Automating the classification of instructional strategies from a large-scale online tutorial dialogue corpus is indispensable to the design of dialogue-based intelligent tutoring systems. Despite many existing studies employing supervised machine learning (ML) models to automate the classification process, they concluded that building a…
Descriptors: Classification, Dialogs (Language), Teaching Methods, Computer Assisted Instruction
Mayer, Christian W. F.; Ludwig, Sabrina; Brandt, Steffen – Journal of Research on Technology in Education, 2023
This study investigates the potential of automated classification using prompt-based learning approaches with transformer models (large language models trained in an unsupervised manner) for a domain-specific classification task. Prompt-based learning with zero or few shots has the potential to (1) make use of artificial intelligence without…
Descriptors: Prompting, Classification, Artificial Intelligence, Natural Language Processing
Jia Tracy Shen; Michiharu Yamashita; Ethan Prihar; Neil Heffernan; Xintao Wu; Sean McGrew; Dongwon Lee – Grantee Submission, 2021
Educational content labeled with proper knowledge components (KCs) are particularly useful to teachers or content organizers. However, manually labeling educational content is labor intensive and error-prone. To address this challenge, prior research proposed machine learning based solutions to auto-label educational content with limited success.…
Descriptors: Mathematics Education, Knowledge Level, Video Technology, Educational Technology
Richie, Russell; Bhatia, Sudeep – Cognitive Science, 2021
Similarity is one of the most important relations humans perceive, arguably subserving category learning and categorization, generalization and discrimination, judgment and decision making, and other cognitive functions. Researchers have proposed a wide range of representations and metrics that could be at play in similarity judgment, yet have not…
Descriptors: Classification, Generalization, Decision Making, Cognitive Processes
Gloria Ashiya Katuka – ProQuest LLC, 2024
Dialogue act (DA) classification plays an important role in understanding, interpreting and modeling dialogue. Dialogue acts (DAs) represent the intended meaning of an utterance, which is associated with the illocutionary force (or the speaker's intention), such as greetings, questions, requests, statements, and agreements. In natural language…
Descriptors: Dialogs (Language), Classification, Intention, Natural Language Processing
Brendan Bartanen; Andrew Kwok; Andrew Avitabile; Brian Heseung Kim – Grantee Submission, 2025
Heightened concerns about the health of the teaching profession highlight the importance of studying the early teacher pipeline. This exploratory, descriptive article examines preservice teachers' expressed motivation for pursuing a teaching career. Using data from a large teacher education program in Texas, we use a natural language processing…
Descriptors: Career Choice, Teaching (Occupation), Teacher Education Programs, Preservice Teachers
Christopher Dann; Petrea Redmond; Melissa Fanshawe; Alice Brown; Seyum Getenet; Thanveer Shaik; Xiaohui Tao; Linda Galligan; Yan Li – Australasian Journal of Educational Technology, 2024
Making sense of student feedback and engagement is important for informing pedagogical decision-making and broader strategies related to student retention and success in higher education courses. Although learning analytics and other strategies are employed within courses to understand student engagement, the interpretation of data for larger data…
Descriptors: Artificial Intelligence, Learner Engagement, Feedback (Response), Decision Making
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2018
While hierarchical machine learning approaches have been used to classify texts into different content areas, this approach has, to our knowledge, not been used in the automated assessment of text difficulty. This study compared the accuracy of four classification machine learning approaches (flat, one-vs-one, one-vs-all, and hierarchical) using…
Descriptors: Artificial Intelligence, Classification, Comparative Analysis, Prediction
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Open-ended comprehension questions are a common type of assessment used to evaluate how well students understand one of multiple documents. Our aim is to use natural language processing (NLP) to infer the level and type of inferencing within readers' answers to comprehension questions using linguistic and semantic features within their responses.…
Descriptors: Natural Language Processing, Taxonomy, Responses, Semantics
Allen, Laura K.; Mills, Caitlin; Perret, Cecile; McNamara, Danielle S. – Grantee Submission, 2019
This study examines the extent to which instructions to self-explain vs. "other"-explain a text lead readers to produce different forms of explanations. Natural language processing was used to examine the content and characteristics of the explanations produced as a function of instruction condition. Undergraduate students (n = 146)…
Descriptors: Language Processing, Science Instruction, Computational Linguistics, Teaching Methods
Stone, Cathlyn; Donnelly, Patrick J.; Dale, Meghan; Capello, Sarah; Kelly, Sean; Godley, Amanda; D'Mello, Sidney K. – International Educational Data Mining Society, 2019
We examine the ability of supervised text classification models to identify several discourse properties from teachers' speech with an eye for providing teachers with meaningful automated feedback about the quality of their classroom discourse. We collected audio recordings from 28 teachers from 10 schools in 164 authentic classroom sessions,…
Descriptors: Classification, Classroom Communication, Audio Equipment, Feedback (Response)
Taniguchi, Yuta; Konomi, Shin'ichi; Goda, Yoshiko – International Association for Development of the Information Society, 2019
This study discusses the automatic coding methods of the Community of Inquiry (CoI) framework for multilingual contexts, in particular. In universities, foreign students cannot be overlooked, and learning systems are also required to work in multilingual situations. However, none of the existing work has addressed the lack of language-agnostic and…
Descriptors: Coding, Multilingualism, Foreign Students, College Students
Stefan Ruseti; Mihai Dascalu; Amy M. Johnson; Renu Balyan; Kristopher J. Kopp; Danielle S. McNamara – Grantee Submission, 2018
This study assesses the extent to which machine learning techniques can be used to predict question quality. An algorithm based on textual complexity indices was previously developed to assess question quality to provide feedback on questions generated by students within iSTART (an intelligent tutoring system that teaches reading strategies). In…
Descriptors: Questioning Techniques, Artificial Intelligence, Networks, Classification
ElMessiry, Adel Magdi – ProQuest LLC, 2016
Complaining is a fundamental human characteristic that has prevailed throughout the ages. We normally complain about something that went wrong. Patient complaints are no exception; they focus on problems that occurred during the episode of care. The Institute of Medicine estimated that each year thousands of patients die due to medical errors. The…
Descriptors: Patients, Health Services, Medical Services, Hospitals
Rus, Vasile; Moldovan, Cristian; Niraula, Nobal; Graesser, Arthur C. – International Educational Data Mining Society, 2012
In this paper we address the important task of automated discovery of speech act categories in dialogue-based, multi-party educational games. Speech acts are important in dialogue-based educational systems because they help infer the student speaker's intentions (the task of speech act classification) which in turn is crucial to providing adequate…
Descriptors: Educational Games, Feedback (Response), Classification, Expertise
Previous Page | Next Page ยป
Pages: 1 | 2