NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive…1
What Works Clearinghouse Rating
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shaheen, Muhammad – Interactive Learning Environments, 2023
Outcome-based education (OBE) is uniquely adapted by most of the educators across the world for objective processing, evaluation and assessment of computing programs and its students. However, the extraction of knowledge from OBE in common is a challenging task because of the scattered nature of the data obtained through Program Educational…
Descriptors: Undergraduate Students, Programming, Computer Science Education, Educational Objectives
Peer reviewed Peer reviewed
Direct linkDirect link
Brandon Sepulvado; Jennifer Hamilton – Society for Research on Educational Effectiveness, 2021
Background: Traditional survey efforts to gather outcome data at scale have significant limitations, including cost, time, and respondent burden. This pilot study explored new and innovative large-scale methods of collecting and validating data from publicly available sources. Taking advantage of emerging data science techniques, we leverage…
Descriptors: Automation, Data Collection, Data Analysis, Validity
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Broisin, Julien; Hérouard, Clément – International Educational Data Mining Society, 2019
How to support students in programming learning has been a great research challenge in the last years. To address this challenge, prior works have mainly focused on proposing solutions based on syntactic analysis to provide students with personalized feedback about their grammatical programming errors and misconceptions. However, syntactic…
Descriptors: Semantics, Programming, Syntax, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Ming; Rus, Vasile; Liu, Li – IEEE Transactions on Learning Technologies, 2017
Question generation is an emerging research area of artificial intelligence in education. Question authoring tools are important in educational technologies, e.g., intelligent tutoring systems, as well as in dialogue systems. Approaches to generate factual questions, i.e., questions that have concrete answers, mainly make use of the syntactical…
Descriptors: Chinese, Questioning Techniques, Automation, Natural Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maaliw, Renato R. III; Ballera, Melvin A. – International Association for Development of the Information Society, 2017
The usage of data mining has dramatically increased over the past few years and the education sector is leveraging this field in order to analyze and gain intuitive knowledge in terms of the vast accumulated data within its confines. The primary objective of this study is to compare the results of different classification techniques such as Naïve…
Descriptors: Classification, Cognitive Style, Electronic Learning, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Casey, Kevin – Journal of Learning Analytics, 2017
Learning analytics offers insights into student behaviour and the potential to detect poor performers before they fail exams. If the activity is primarily online (for example computer programming), a wealth of low-level data can be made available that allows unprecedented accuracy in predicting which students will pass or fail. In this paper, we…
Descriptors: Keyboarding (Data Entry), Educational Research, Data Collection, Data Analysis
Heiner, Cecily; Zachary, Joseph L. – International Working Group on Educational Data Mining, 2009
Students in introductory programming classes often articulate their questions and information needs incompletely. Consequently, the automatic classification of student questions to provide automated tutorial responses is a challenging problem. This paper analyzes 411 questions from an introductory Java programming course by reducing the natural…
Descriptors: Classification, Questioning Techniques, Introductory Courses, Computer Science Education
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries