Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 9 |
Descriptor
Classification | 9 |
Natural Language Processing | 9 |
Reading Comprehension | 9 |
Artificial Intelligence | 6 |
Models | 5 |
Essays | 4 |
Intelligent Tutoring Systems | 4 |
Mathematics | 4 |
Prediction | 4 |
Accuracy | 3 |
College Students | 3 |
More ▼ |
Source
Grantee Submission | 4 |
International Educational… | 3 |
ETS Research Report Series | 1 |
International Journal of… | 1 |
Author
McNamara, Danielle S. | 6 |
Balyan, Renu | 4 |
McCarthy, Kathryn S. | 4 |
Dascalu, Mihai | 2 |
Nicula, Bogdan | 2 |
Barnes, Tiffany, Ed. | 1 |
Futagi, Yoko | 1 |
Hemat, Ramin | 1 |
Hershkovitz, Arnon, Ed. | 1 |
Hu, Xiangen, Ed. | 1 |
Kostin, Irene | 1 |
More ▼ |
Publication Type
Reports - Research | 7 |
Journal Articles | 4 |
Speeches/Meeting Papers | 3 |
Collected Works - Proceedings | 2 |
Information Analyses | 1 |
Numerical/Quantitative Data | 1 |
Education Level
Higher Education | 5 |
Postsecondary Education | 5 |
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 6 | 1 |
Intermediate Grades | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Flesch Kincaid Grade Level… | 2 |
Graduate Record Examinations | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – International Journal of Artificial Intelligence in Education, 2020
For decades, educators have relied on readability metrics that tend to oversimplify dimensions of text difficulty. This study examines the potential of applying advanced artificial intelligence methods to the educational problem of assessing text difficulty. The combination of hierarchical machine learning and natural language processing (NLP) is…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Classification
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2020
For decades, educators have relied on readability metrics that tend to oversimplify dimensions of text difficulty. This study examines the potential of applying advanced artificial intelligence methods to the educational problem of assessing text difficulty. The combination of hierarchical machine learning and natural language processing (NLP) is…
Descriptors: Natural Language Processing, Artificial Intelligence, Man Machine Systems, Classification
Nicula, Bogdan; Perret, Cecile A.; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2020
Open-ended comprehension questions are a common type of assessment used to evaluate how well students understand one of multiple documents. Our aim is to use natural language processing (NLP) to infer the level and type of inferencing within readers' answers to comprehension questions using linguistic and semantic features within their responses.…
Descriptors: Natural Language Processing, Taxonomy, Responses, Semantics
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie N.; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
Learning to paraphrase supports both writing ability and reading comprehension, particularly for less skilled learners. As such, educational tools that integrate automated evaluations of paraphrases can be used to provide timely feedback to enhance learner paraphrasing skills more efficiently and effectively. Paraphrase identification is a popular…
Descriptors: Computational Linguistics, Feedback (Response), Classification, Learning Processes
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2017
This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…
Descriptors: Artificial Intelligence, Natural Language Processing, Reading Comprehension, Literature
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – International Educational Data Mining Society, 2017
This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…
Descriptors: Artificial Intelligence, Natural Language Processing, Reading Comprehension, Literature
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Sheehan, Kathleen M.; Kostin, Irene; Futagi, Yoko; Hemat, Ramin; Zuckerman, Daniel – ETS Research Report Series, 2006
This paper describes the development, implementation, and evaluation of an automated system for predicting the acceptability status of candidate reading-comprehension stimuli extracted from a database of journal and magazine articles. The system uses a combination of classification and regression techniques to predict the probability that a given…
Descriptors: Automation, Prediction, Reading Comprehension, Classification
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection