NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)2
Since 2006 (last 20 years)5
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Ming; Rus, Vasile; Liu, Li – IEEE Transactions on Learning Technologies, 2017
Question generation is an emerging research area of artificial intelligence in education. Question authoring tools are important in educational technologies, e.g., intelligent tutoring systems, as well as in dialogue systems. Approaches to generate factual questions, i.e., questions that have concrete answers, mainly make use of the syntactical…
Descriptors: Chinese, Questioning Techniques, Automation, Natural Language Processing
Nye, Benjamin D.; Morrison, Donald M.; Samei, Borhan – International Educational Data Mining Society, 2015
Archived transcripts from tens of millions of online human tutoring sessions potentially contain important knowledge about how online tutors help, or fail to help, students learn. However, without ways of automatically analyzing these large corpora, any knowledge in this data will remain buried. One way to approach this issue is to train an…
Descriptors: Tutoring, Instructional Effectiveness, Tutors, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2016
Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…
Descriptors: Intelligent Tutoring Systems, Models, Open Source Technology, Computers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sheehan, Kathleen M.; Kostin, Irene; Futagi, Yoko; Hemat, Ramin; Zuckerman, Daniel – ETS Research Report Series, 2006
This paper describes the development, implementation, and evaluation of an automated system for predicting the acceptability status of candidate reading-comprehension stimuli extracted from a database of journal and magazine articles. The system uses a combination of classification and regression techniques to predict the probability that a given…
Descriptors: Automation, Prediction, Reading Comprehension, Classification
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries