Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 5 |
Descriptor
Coding | 5 |
Computer Science Education | 4 |
Programming | 4 |
Artificial Intelligence | 2 |
Assignments | 2 |
Classification | 2 |
Evaluation Methods | 2 |
Learning Analytics | 2 |
Models | 2 |
Programming Languages | 2 |
Teaching Methods | 2 |
More ▼ |
Author
Barnes, Tiffany | 5 |
Chi, Min | 3 |
Price, Thomas W. | 3 |
Shi, Yang | 3 |
Mao, Ye | 2 |
Marwan, Samiha | 2 |
Akram, Bita | 1 |
Erickson, Bradley | 1 |
Gao, Zhikai | 1 |
Heckman, Sarah | 1 |
Lynch, Collin | 1 |
More ▼ |
Publication Type
Reports - Research | 5 |
Speeches/Meeting Papers | 4 |
Journal Articles | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Audience
Location
Virginia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Gao, Zhikai; Erickson, Bradley; Xu, Yiqiao; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2022
In computer science education timely help seeking during large programming projects is essential for student success. Help-seeking in typical courses happens in office hours and through online forums. In this research, we analyze students coding activities and help requests to understand the interaction between these activities. We collected…
Descriptors: Computer Science Education, College Students, Programming, Coding
Marwan, Samiha; Akram, Bita; Barnes, Tiffany; Price, Thomas W. – IEEE Transactions on Learning Technologies, 2022
Theories on learning show that formative feedback that is immediate, specific, corrective, and positive is essential to improve novice students' motivation and learning. However, most prior work on programming feedback focuses on highlighting student's mistakes, or detecting failed test cases after they submit a solution. In this article, we…
Descriptors: Feedback (Response), Formative Evaluation, Programming, Coding
Shi, Yang; Mao, Ye; Barnes, Tiffany; Chi, Min; Price, Thomas W. – International Educational Data Mining Society, 2021
Automatically detecting bugs in student program code is critical to enable formative feedback to help students pinpoint errors and resolve them. Deep learning models especially code2vec and ASTNN have shown great success for "large-scale" code classification. It is not clear, however, whether they can be effectively used for bug…
Descriptors: Artificial Intelligence, Program Effectiveness, Coding, Computer Science Education
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics