Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 12 |
Since 2016 (last 10 years) | 17 |
Since 2006 (last 20 years) | 21 |
Descriptor
Source
International Educational… | 21 |
Author
Barnes, Tiffany | 4 |
Chi, Min | 3 |
Shi, Yang | 3 |
Baker, Ryan S. | 2 |
Boyer, Kristy Elizabeth | 2 |
Höppner, Frank | 2 |
Lester, James | 2 |
Mao, Ye | 2 |
Mott, Bradford | 2 |
Paquette, Luc | 2 |
Piech, Chris | 2 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 19 |
Reports - Research | 16 |
Collected Works - Proceedings | 2 |
Reports - Descriptive | 2 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 8 |
Postsecondary Education | 8 |
Secondary Education | 5 |
Elementary Education | 4 |
Junior High Schools | 4 |
Middle Schools | 4 |
High Schools | 2 |
Early Childhood Education | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
More ▼ |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Cai, Zhiqiang; Marquart, Cody; Shaffer, David W. – International Educational Data Mining Society, 2022
Regular expression (regex) coding has advantages for text analysis. Humans are often able to quickly construct intelligible coding rules with high precision. That is, researchers can identify words and word patterns that correctly classify examples of a particular concept. And, it is often easy to identify false positives and improve the regex…
Descriptors: Coding, Classification, Artificial Intelligence, Engineering Education
Gao, Zhikai; Erickson, Bradley; Xu, Yiqiao; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2022
In computer science education timely help seeking during large programming projects is essential for student success. Help-seeking in typical courses happens in office hours and through online forums. In this research, we analyze students coding activities and help requests to understand the interaction between these activities. We collected…
Descriptors: Computer Science Education, College Students, Programming, Coding
Jahnke, Maximilian; Höppner, Frank – International Educational Data Mining Society, 2022
The value of an instructor is that she exactly recognizes what the learner is struggling with and provides constructive feedback straight to the point. This work aims at a step towards this type of feedback in the context of an introductory programming course, where students perform program execution tracing to align their understanding of Java…
Descriptors: Programming, Coding, Computer Science Education, Error Patterns
Shi, Yang; Mao, Ye; Barnes, Tiffany; Chi, Min; Price, Thomas W. – International Educational Data Mining Society, 2021
Automatically detecting bugs in student program code is critical to enable formative feedback to help students pinpoint errors and resolve them. Deep learning models especially code2vec and ASTNN have shown great success for "large-scale" code classification. It is not clear, however, whether they can be effectively used for bug…
Descriptors: Artificial Intelligence, Program Effectiveness, Coding, Computer Science Education
Höppner, Frank – International Educational Data Mining Society, 2021
Various similarity measures for source code have been proposed, many rely on edit- or tree-distance. To support a lecturer in quickly assessing live or online exercises with respect to "approaches taken by the students," we compare source code on a more abstract, semantic level. Even if novice student's solutions follow the same idea,…
Descriptors: Coding, Classification, Programming, Computer Science Education
Dave, Neisarg; Bakes, Riley; Pursel, Barton; Giles, C. Lee – International Educational Data Mining Society, 2021
We investigate encoder-decoder GRU networks with attention mechanism for solving a diverse array of elementary math problems with mathematical symbolic structures. We quantitatively measure performances of recurrent models on a given question type using a test set of unseen problems with a binary scoring and partial credit system. From our…
Descriptors: Multiple Choice Tests, Mathematics Tests, Problem Solving, Attention
Malik, Ali; Wu, Mike; Vasavada, Vrinda; Song, Jinpeng; Coots, Madison; Mitchell, John; Goodman, Noah; Piech, Chris – International Educational Data Mining Society, 2021
Access to high-quality education at scale is limited by the difficulty of providing student feedback on open-ended assignments in structured domains like programming, graphics, and short response questions. This problem has proven to be exceptionally difficult: for humans, it requires large amounts of manual work, and for computers, until…
Descriptors: Grading, Accuracy, Computer Assisted Testing, Automation
Zhou, Guojing; Moulder, Robert G.; Sun, Chen; D'Mello, Sidney K. – International Educational Data Mining Society, 2022
In collaborative problem solving (CPS), people's actions are interactive, interdependent, and temporal. However, it is unclear how actions temporally relate to each other and what are the temporal similarities and differences between successful vs. unsuccessful CPS processes. As such, we apply a temporal analysis approach, Multilevel Vector…
Descriptors: Cooperative Learning, Problem Solving, College Students, Physics
Tsabari, Stav; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2023
Automatically identifying struggling students learning to program can assist teachers in providing timely and focused help. This work presents a new deep-learning language model for predicting "bug-fix-time", the expected duration between when a software bug occurs and the time it will be fixed by the student. Such information can guide…
Descriptors: College Students, Computer Science Education, Programming, Error Patterns
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Ma, Yingbo; Katuka, Gloria Ashiya; Celepkolu, Mehmet; Boyer, Kristy Elizabeth – International Educational Data Mining Society, 2022
Collaborative learning is a complex process during which two or more learners exchange opinions, construct shared knowledge, and solve problems together. While engaging in this interactive process, learners' satisfaction toward their partners plays a crucial role in defining the success of the collaboration. If intelligent systems could predict…
Descriptors: Middle School Students, Cooperative Learning, Prediction, Peer Relationship
Paaßen, Benjamin; Jensen, Joris; Hammer, Barbara – International Educational Data Mining Society, 2016
The first intelligent tutoring systems for computer programming have been proposed more than 30 years ago, mostly focusing on well defined programming tasks e.g. in the context of logic programming. Recent systems also teach complex programs, where explicit modelling of every possible program and mistake is no longer possible. Such systems are…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Data
Emerson, Andrew; Rodríguez, Fernando J.; Mott, Bradford; Smith, Andy; Min, Wookhee; Boyer, Kristy Elizabeth; Smith, Cody; Wiebe, Eric; Lester, James – International Educational Data Mining Society, 2019
Recent years have seen a growing interest in block-based programming environments for computer science education. While these environments hold significant potential for novice programmers, they lack the adaptive support necessary to accommodate students exhibiting a wide range of initial capabilities and dispositions toward computing. A promising…
Descriptors: Programming, Computer Science Education, Feedback (Response), Prediction
Wang, Lisa; Sy, Angela; Liu, Larry; Piech, Chris – International Educational Data Mining Society, 2017
Modeling student knowledge while students are acquiring new concepts is a crucial stepping stone towards providing personalized automated feedback at scale. We believe that rich information about a student's learning is captured within her responses to open-ended problems with unbounded solution spaces, such as programming exercises. In addition,…
Descriptors: Online Courses, Knowledge Level, Pedagogical Content Knowledge, Scaffolding (Teaching Technique)
Previous Page | Next Page »
Pages: 1 | 2