NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ezeamuzie, Ndudi O. – Journal of Educational Computing Research, 2023
Most studies suggest that students develop computational thinking (CT) through learning programming. However, when the target of CT is decoupled from programming, emerging evidence challenges the assertion of CT transferability from programming. In this study, CT was operationalized in everyday problem-solving contexts in a learning experiment (n…
Descriptors: Programming, Computer Science Education, Problem Solving, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Finke, Sabrina; Kemény, Ferenc; Sommer, Markus; Krnjic, Vesna; Arendasy, Martin; Slany, Wolfgang; Landerl, Karin – Computer Science Education, 2022
Background: Key to optimizing Computational Thinking (CT) instruction is a precise understanding of the underlying cognitive skills. Román-González et al. (2017) reported unique contributions of spatial abilities and reasoning, whereas arithmetic was not significantly related to CT. Disentangling the influence of spatial and numerical skills on CT…
Descriptors: Spatial Ability, Cognitive Ability, Abstract Reasoning, Arithmetic
Peer reviewed Peer reviewed
Hudak, Mary A.; Anderson, David E. – Teaching of Psychology, 1990
Studies 94 undergraduate students in introductory statistics and computer science courses. Applies Formal Operations Reasoning Test (FORT) and Kolb's Learning Style Inventory (LSI). Finds that substantial numbers of students have not achieved the formal operation level of cognitive maturity. Emphasizes need to examine students learning style and…
Descriptors: Abstract Reasoning, Academic Achievement, Analysis of Variance, Cognitive Ability