NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 38 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Amna Ghani; Caroline Di Bernardi Luft; Smadar Ovadio-Caro; Klaus-Robert Müller; Joydeep Bhattacharya – Creativity Research Journal, 2024
Chance favors the prepared mind, said Louis Pasteur. Sometimes, significant breakthroughs occur when we creatively integrate new information, leading to a creative insight or an Aha! moment, while at other times when we fail to use a clue, we remain stuck in our habitual thinking patterns. In this study, we hypothesized that the brain's transient…
Descriptors: Brain, Brain Hemisphere Functions, Cognitive Processes, Intuition
Peer reviewed Peer reviewed
Direct linkDirect link
Ovando-Tellez, Marcela; Kenett, Yoed N.; Benedek, Mathias; Bernard, Matthieu; Belo, Joan; Beranger, Benoit; Bieth, Theophile; Volle, Emmanuelle – Creativity Research Journal, 2023
Associative thinking plays a major role in creativity, as it involves the ability to link distant concepts. Yet, the neural mechanisms allowing to combine distant associates in creative thinking tasks remain poorly understood. We investigated the whole-brain functional connectivity patterns related to combining remote associations for creative…
Descriptors: Brain, Associative Learning, Cognitive Processes, Creative Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Ronald Mtenga; Mathias Bode; Radwa Khalil – Journal of Creative Behavior, 2025
Creative thinking stems from the cognitive process that fosters the creation of new ideas and problem-solving solutions. Artificial intelligence systems and neural network models can reduce the intricacy of understanding creative cognition. For instance, the generation of ideas could be symbolized as patterns of binary code in which clusters of…
Descriptors: Inhibition, Creative Thinking, Cognitive Processes, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Elsa Raynal; Kate Schipper; Catherine Brandner; Paolo Ruggeri; Jérôme Barral – npj Science of Learning, 2024
Associative learning abilities vary considerably among individuals, with attentional processes suggested to play a role in these variations. However, the relationship between attentional processes and individual differences in associative learning remains unclear, and whether these variations reflect in event-related potentials (ERPs) is unknown.…
Descriptors: Associative Learning, Attention, Cognitive Processes, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Behnam Karami; Caspar M. Schwiedrzik – npj Science of Learning, 2024
Visual objects are often defined by multiple features. Therefore, learning novel objects entails learning feature conjunctions. Visual cortex is organized into distinct anatomical compartments, each of which is devoted to processing a single feature. A prime example are neurons purely selective to color and orientation, respectively. However,…
Descriptors: Visual Perception, Visual Learning, Novelty (Stimulus Dimension), Brain Hemisphere Functions
Peer reviewed Peer reviewed
Direct linkDirect link
Cong Xie; Shuangfei Zhang; Xinuo Qiao; Ning Hao – npj Science of Learning, 2024
This study investigated whether transcranial direct current stimulation (tDCS) targeting the inferior frontal gyrus (IFG) can alter the thinking process and neural basis of creativity. Participants' performance on the compound remote associates (CRA) task was analyzed considering the semantic features of each trial after receiving different tDCS…
Descriptors: Stimulation, Brain Hemisphere Functions, Semantics, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ostroff, Linnaea E.; Cain, Christopher K. – Learning & Memory, 2022
Local protein synthesis at synapses can provide a rapid supply of proteins to support synaptic changes during consolidation of new memories, but its role in the maintenance or updating of established memories is unknown. Consolidation requires new protein synthesis in the period immediately following learning, whereas established memories are…
Descriptors: Long Term Memory, Associative Learning, Brain, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Perfetti, Charles; Helder, Anne – Discourse Processes: A Multidisciplinary Journal, 2021
The study of word-to-text integration (WTI) provides a window on incremental processes that link the meaning of a word to the preceding text. We review a research program using event-related potential indicators of WTI at sentence beginnings, thus localizing sources of integration to prior text meaning independently of the current sentence. The…
Descriptors: Reading Comprehension, Sentences, Reading Processes, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Zerbes, Gundula; Schwabe, Lars – Learning & Memory, 2019
Successful episodic memory requires binding of event details across spatial and temporal gaps. The neural processes underlying mnemonic binding, however, are not fully understood. Moreover, although acute stress is known to modulate memory, if and how stress changes mnemonic integration across time and space is unknown. To elucidate these issues,…
Descriptors: Spatial Ability, Stress Variables, Cognitive Processes, Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Tallot, Lucille; Diaz-Mataix, Lorenzo; Perry, Rosemarie E.; Wood, Kira; LeDoux, Joseph E.; Mouly, Anne-Marie; Sullivan, Regina M.; Doyère, Valérie – Learning & Memory, 2017
The updating of a memory is triggered whenever it is reactivated and a mismatch from what is expected (i.e., prediction error) is detected, a process that can be unraveled through the memory's sensitivity to protein synthesis inhibitors (i.e., reconsolidation). As noted in previous studies, in Pavlovian threat/aversive conditioning in adult rats,…
Descriptors: Long Term Memory, Error Patterns, Cognitive Processes, Brain
Peer reviewed Peer reviewed
Direct linkDirect link
Merschbaecher, Katja; Hatko, Lucyna; Folz, Jennifer; Mueller, Uli – Learning & Memory, 2016
Acetylation of histones changes the efficiency of the transcription processes and thus contributes to the formation of long-term memory (LTM). In our comparative study, we used two inhibitors to characterize the contribution of different histone acetyl transferases (HATs) to appetitive associative learning in the honeybee. For one we applied…
Descriptors: Inhibition, Long Term Memory, Cognitive Processes, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jessica E. Bartley; Michael C. Riedel; Taylor Salo; Emily R. Boeving; Katherine L. Bottenhorn; Elsa I. Bravo; Rosalie Odean; Alina Nazareth; Robert W. Laird; Matthew T. Sutherland; Shannon M. Pruden; Eric Brewe; Angela R. Laird – npj Science of Learning, 2019
Understanding how students learn is crucial for helping them succeed. We examined brain function in 107 undergraduate students during a task known to be challenging for many students--physics problem solving--to characterize the underlying neural mechanisms and determine how these support comprehension and proficiency. Further, we applied module…
Descriptors: Brain, Cognitive Processes, Science Process Skills, Abstract Reasoning
Peer reviewed Peer reviewed
Direct linkDirect link
Madalan, Adrian; Yang, Xiao; Ferris, Jacob; Zhang, Shixing; Roman, Gregg – Learning & Memory, 2012
Heterotrimeric G(o) is an abundant brain protein required for negatively reinforced short-term associative olfactory memory in "Drosophila". G(o) is the only known substrate of the S1 subunit of pertussis toxin (PTX) in fly, and acute expression of PTX within the mushroom body neurons (MB) induces a reversible deficit in associative olfactory…
Descriptors: Associative Learning, Short Term Memory, Cognitive Processes, Animals
Peer reviewed Peer reviewed
Direct linkDirect link
Cole, Sindy; Powell, Daniel J.; Petrovich, Gorica D. – Learning & Memory, 2013
The amygdala is important for reward-associated learning, but how distinct cell groups within this heterogeneous structure are recruited during appetitive learning is unclear. Here we used Fos induction to map the functional amygdalar circuitry recruited during early and late training sessions of Pavlovian appetitive conditioning. We found that a…
Descriptors: Associative Learning, Brain, Neurological Organization, Conditioning
Peer reviewed Peer reviewed
Direct linkDirect link
Oros, Nicolas; Chiba, Andrea A.; Nitz, Douglas A.; Krichmar, Jeffrey L. – Learning & Memory, 2014
Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate attention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus…
Descriptors: Stimuli, Cognitive Processes, Attention, Brain Hemisphere Functions
Previous Page | Next Page »
Pages: 1  |  2  |  3