NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 42 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Delianidi, Marina; Diamantaras, Konstantinos – Journal of Educational Data Mining, 2023
Student performance is affected by their knowledge which changes dynamically over time. Therefore, employing recurrent neural networks (RNN), which are known to be very good in dynamic time series prediction, can be a suitable approach for student performance prediction. We propose such a neural network architecture containing two modules: (i) a…
Descriptors: Academic Achievement, Prediction, Cognitive Measurement, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Sandry, Joshua; Ricker, Timothy J. – Cognitive Research: Principles and Implications, 2022
The drift diffusion model (DDM) is a widely applied computational model of decision making that allows differentiation between latent cognitive and residual processes. One main assumption of the DDM that has undergone little empirical testing is the level of independence between cognitive and motor responses. If true, widespread incorporation of…
Descriptors: Decision Making, Motor Reactions, Cognitive Processes, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kangasrääsiö, Antti; Jokinen, Jussi P. P.; Oulasvirta, Antti; Howes, Andrew; Kaski, Samuel – Cognitive Science, 2019
This paper addresses a common challenge with computational cognitive models: identifying parameter values that are both theoretically plausible and generate predictions that match well with empirical data. While computational models can offer deep explanations of cognition, they are computationally complex and often out of reach of traditional…
Descriptors: Inferences, Computation, Cognitive Processes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Rehder, Bob – Cognitive Science, 2017
This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…
Descriptors: Abstract Reasoning, Logical Thinking, Causal Models, Graphs
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Zhidong – International Education Studies, 2018
This study explored a diagnostic assessment method that emphasized the cognitive process of algebra learning. The study utilized a design and a theory-driven model to examine the content knowledge. Using the theory driven model, the thinking skills of algebra learning was also examined. A Bayesian network model was applied to represent the theory…
Descriptors: Algebra, Bayesian Statistics, Scores, Mathematics Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Shiyu; Yang, Yan; Culpepper, Steven Andrew; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2018
A family of learning models that integrates a cognitive diagnostic model and a higher-order, hidden Markov model in one framework is proposed. This new framework includes covariates to model skill transition in the learning environment. A Bayesian formulation is adopted to estimate parameters from a learning model. The developed methods are…
Descriptors: Skill Development, Cognitive Measurement, Cognitive Processes, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Dan; Opfer, John E. – Developmental Psychology, 2017
Representations of numerical value have been assessed by using bounded (e.g., 0-1,000) and unbounded (e.g., 0-?) number-line tasks, with considerable debate regarding whether 1 or both tasks elicit unique cognitive strategies (e.g., addition or subtraction) and require unique cognitive models. To test this, we examined how well a mixed log-linear…
Descriptors: Computation, Numbers, Children, Cognitive Development
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Lin, Chen; Chi, Min – Journal of Educational Data Mining, 2018
Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling…
Descriptors: Prediction, Pretests Posttests, Bayesian Statistics, Short Term Memory
Peer reviewed Peer reviewed
Direct linkDirect link
DiCerbo, Kristen E.; Xu, Yuning; Levy, Roy; Lai, Emily; Holland, Laura – Educational Assessment, 2017
Inferences about student knowledge, skills, and attributes based on digital activity still largely come from whether students ultimately get a correct result or not. However, the ability to collect activity stream data as individuals interact with digital environments provides information about students' processes as they progress through learning…
Descriptors: Models, Cognitive Processes, Elementary School Students, Grade 3
Peer reviewed Peer reviewed
Direct linkDirect link
Nosofsky, Robert M.; Donkin, Chris – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
We report an experiment designed to provide a qualitative contrast between knowledge-limited versions of mixed-state and variable-resources (VR) models of visual change detection. The key data pattern is that observers often respond "same" on big-change trials, while simultaneously being able to discriminate between same and small-change…
Descriptors: Short Term Memory, Probability, Models, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Phillips, Lawrence; Pearl, Lisa – Cognitive Science, 2015
The informativity of a computational model of language acquisition is directly related to how closely it approximates the actual acquisition task, sometimes referred to as the model's "cognitive plausibility." We suggest that though every computational model necessarily idealizes the modeled task, an informative language acquisition…
Descriptors: Language Acquisition, Models, Computational Linguistics, Credibility
Peer reviewed Peer reviewed
Direct linkDirect link
Landy, David; Silbert, Noah; Goldin, Aleah – Cognitive Science, 2013
Despite their importance in public discourse, numbers in the range of 1 million to 1 trillion are notoriously difficult to understand. We examine magnitude estimation by adult Americans when placing large numbers on a number line and when qualitatively evaluating descriptions of imaginary geopolitical scenarios. Prior theoretical conceptions…
Descriptors: Numbers, Computation, Adults, Models
Peer reviewed Peer reviewed
Direct linkDirect link
McCormack, Teresa; Frosch, Caren; Patrick, Fiona; Lagnado, David – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
Three experiments examined children's and adults' abilities to use statistical and temporal information to distinguish between common cause and causal chain structures. In Experiment 1, participants were provided with conditional probability information and/or temporal information and asked to infer the causal structure of a 3-variable mechanical…
Descriptors: Probability, Age Differences, Children, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
McClelland, James L.; Mirman, Daniel; Bolger, Donald J.; Khaitan, Pranav – Cognitive Science, 2014
In a seminal 1977 article, Rumelhart argued that perception required the simultaneous use of multiple sources of information, allowing perceivers to optimally interpret sensory information at many levels of representation in real time as information arrives. Building on Rumelhart's arguments, we present the Interactive Activation…
Descriptors: Perception, Comprehension, Cognitive Processes, Alphabets
Peer reviewed Peer reviewed
Direct linkDirect link
Tatsuoka, Curtis; Varadi, Ferenc; Jaeger, Judith – Journal of Educational and Behavioral Statistics, 2013
Latent partially ordered sets (posets) can be employed in modeling cognitive functioning, such as in the analysis of neuropsychological (NP) and educational test data. Posets are cognitively diagnostic in the sense that classification states in these models are associated with detailed profiles of cognitive functioning. These profiles allow for…
Descriptors: Classification, Models, Nonparametric Statistics, Bayesian Statistics
Previous Page | Next Page »
Pages: 1  |  2  |  3