NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 80 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yifan Li; Anmin Liu; Runming Si; Leyan Liu; Qidong Zhao – Journal of Chemical Education, 2024
The plate and frame filtration experiment is one of the essential experiments performed by undergraduate students during their practical education. While this experiment often relies on the conventional manual recording of data and calculation, there are frequent problems with data collection because capturing transient data of filtrate volume and…
Descriptors: Internet, Automation, Undergraduate Study, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Priya Yadav; Harshita Laddha; Madhu Agarwal; Ragini Gupta – Journal of Chemical Education, 2022
A smartphone-based digital imaging method has been successfully introduced in an undergraduate laboratory class to quantify fluoride ions in water. Students first synthesized the chemosensor (E)-2-(1-(6-nitro-2-oxo-2H-chromen-3-yl)ethylidene)-N-phenylhydrazine-1-carbothioamide (CT) via an eco-friendly and green microwave-assisted protocol and…
Descriptors: Handheld Devices, Telecommunications, Educational Technology, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Esvan, Yannick J.; Zeinyeh, Wael – Journal of Chemical Education, 2020
The Fourier transformation (FT) is a mathematical process frequently encountered by chemistry students. However, it remains an automated background process perceived by many students as difficult to understand. In this paper we present a simple open-source web application, which can help students to understand the basics of the FT applied to…
Descriptors: Chemistry, Spectroscopy, Laboratory Procedures, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Rathod, Balraj B.; Murthy, Sahana; Bandyopadhyay, Subhajit – Journal of Chemical Education, 2019
"Is this solution pink enough?" is a persistent question when it comes to phenolphthalein-based titration experiments, one that budding, novice scientists often ask their instructors. Lab instructors usually answer the inquiry with remarks like, "Looks like you have overshot the end point", "Perhaps you should check the…
Descriptors: Handheld Devices, Telecommunications, Chemistry, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Hawley, Scott H.; McClain, Robert E., Jr. – Physics Teacher, 2018
When Yang-Hann Kim received the Rossing Prize in Acoustics Education at the 2015 meeting of the Acoustical Society of America, he stressed the importance of offering visual depictions of sound fields when teaching acoustics. Often visualization methods require specialized equipment such as microphone arrays or scanning apparatus. We present a…
Descriptors: Physics, Acoustics, Visualization, Telecommunications
Karl, John H. – 1971
The indroduction of on-line data collection and data processing techniques into an intermediate physics laboratory is described. Using a minimum configuration PDP-8L and a Digital Equipment AD01 analog to digital converter, an interface is developed with two existing experiments. These are a microwave apparatus used to simulate Bragg diffraction…
Descriptors: Analog Computers, College Science, Computer Oriented Programs, Digital Computers
Schenck, Hilbert, Jr. – 1963
The author views the primary purpose of the modern engineering laboratory as teaching the student how to experiment. An attempt is made to update the engineering laboratory and make it generally meaningful for all students, whether headed for graduate school or an industrial job. The intent is to broaden the experimental picture so that students…
Descriptors: Analog Computers, College Science, Computer Oriented Programs, Engineering
Peer reviewed Peer reviewed
Moore, John W., Ed. – Journal of Chemical Education, 1985
Describes (1) interfacing the Commodore VIC-20 using joystick game ports; (2) a chromatographic integrator for the TRS-80; (3) upgrading input/output capabilities of the TRS-80 color microcomputer; (4) IBM PC interfaced to a Perkin-Elmer DSC-1 differential scanning calorimeter; and (5) an undergraduate experiment in which students design a…
Descriptors: Chemistry, College Science, Computer Oriented Programs, Computer Software
Peer reviewed Peer reviewed
Nicklin, R. C. – Journal of College Science Teaching, 1985
Microcomputers can record laboratory measurements which human laboratory partners can never collect. Simple, harder, and general-purpose interfaces are discussed, with suggestions for several experiments involving an exercise bike, acceleration, and pendulums. Additional applications with pH meters, spectrophotometers, and chromatographs are also…
Descriptors: College Science, Computer Oriented Programs, Higher Education, Laboratory Procedures
Peer reviewed Peer reviewed
Myers, Robert L. – Journal of Chemical Education, 1986
Describes a computerized grading system using mark-sense cards to record experimental data. Gives hardware requirements, provides estimated budget, and lists experiments for which mark-sense cards have been developed and are available. Discusses the grading process and programs. (JM)
Descriptors: Chemistry, College Science, Computer Oriented Programs, Computers
Peer reviewed Peer reviewed
Dowling, John, Jr. – American Journal of Physics, 1972
Discusses the use of a set of computer programs (FORTRAN IV) in an introductory mechanics course for science majors. One laboratory activity is described for determining the coefficient of restitution of a glider on an air track. A student evaluation for the lab is included in the appendix. (Author/TS)
Descriptors: College Science, Computer Oriented Programs, Computer Programs, Course Descriptions
Peer reviewed Peer reviewed
Geller, Kenneth N.; Newstein, Herman – American Journal of Physics, 1972
Experiments are designed with application to phenomena of the real world for use in a third-quarter introductory college physics course in wave motion, sound, and light. The computer is used to process and analyze experimental data and to extend experimental observations through simulation. (Author/TS)
Descriptors: Acoustics, College Science, Computer Oriented Programs, Course Descriptions
Peer reviewed Peer reviewed
Johnson, Ray L. – Journal of Chemical Education, 1982
A laboratory computer system based on the Commodore PET 2001 is described including three applications for the undergraduate analytical chemistry laboratory: (1) recording a UV-visible absorption spectrum; (2) recording and use of calibration curves; and (3) recording potentiometric data. Lists of data acquisition programs described are available…
Descriptors: Chemistry, College Science, Computer Oriented Programs, Data Collection
Beatty, Jim – Computers in Chemical Education Newsletter, 1985
Suggests purchasing a digital multimer (DMM) with an IEEE-488 option to interface an instrument to a microcomputer, indicating that a DMM is well protected from overloads and is easy to connect. An example of its use in an experiment involving hydrolysis of tertiary butyl alcohol (with program listing) is given. (JN)
Descriptors: Chemistry, College Science, Computer Oriented Programs, Computer Software
Peer reviewed Peer reviewed
Anderson, Robert J.; Woodworth, Paul H. – Journal of Chemical Education, 1985
Describes laboratory experiments suitable for teaching the principles of digital electronics and computer interfacing to undergraduate chemistry students. Also describes the program for teaching laboratory uses of computers. The program functions to teach principles of computer interfacing while displacing as little chemistry as possible from the…
Descriptors: Chemistry, College Science, Computer Oriented Programs, Course Descriptions
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6