Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 6 |
| Since 2007 (last 20 years) | 8 |
Descriptor
| College Science | 74 |
| Computer Oriented Programs | 74 |
| Higher Education | 49 |
| Science Education | 40 |
| Chemistry | 36 |
| Laboratory Procedures | 34 |
| Science Instruction | 25 |
| Science Experiments | 22 |
| Science Laboratories | 18 |
| Computer Programs | 17 |
| Laboratory Experiments | 16 |
| More ▼ | |
Source
Author
| Moore, John W., Ed. | 3 |
| Dessy, Raymond E., Ed. | 2 |
| Ahl, David H. | 1 |
| Amend, John R. | 1 |
| An, Jiwoo | 1 |
| Angier, Natalie | 1 |
| Anthony Monte Carlo | 1 |
| Bacon, C. M. | 1 |
| Barnard, Sister Marquita | 1 |
| Bayless, Philip L. | 1 |
| Beatty, Jim | 1 |
| More ▼ | |
Publication Type
Education Level
| Higher Education | 8 |
| Postsecondary Education | 8 |
| High Schools | 1 |
| Secondary Education | 1 |
Audience
| Practitioners | 24 |
| Teachers | 14 |
| Researchers | 4 |
| Policymakers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Esvan, Yannick J.; Zeinyeh, Wael – Journal of Chemical Education, 2020
The Fourier transformation (FT) is a mathematical process frequently encountered by chemistry students. However, it remains an automated background process perceived by many students as difficult to understand. In this paper we present a simple open-source web application, which can help students to understand the basics of the FT applied to…
Descriptors: Chemistry, Spectroscopy, Laboratory Procedures, Laboratory Experiments
Plunkett, Kyle N. – Journal of Chemical Education, 2019
This paper provides two demonstrations of how Augmented Reality (AR), which is the projection of virtual information onto a real-world object, can be applied in the classroom and in the laboratory. Using only a smart phone and the free HP Reveal app, content rich AR notecards were prepared. The physical notecards are based on Organic Chemistry I…
Descriptors: Computer Simulation, Educational Technology, Handheld Devices, Computer Oriented Programs
Priya Yadav; Harshita Laddha; Madhu Agarwal; Ragini Gupta – Journal of Chemical Education, 2022
A smartphone-based digital imaging method has been successfully introduced in an undergraduate laboratory class to quantify fluoride ions in water. Students first synthesized the chemosensor (E)-2-(1-(6-nitro-2-oxo-2H-chromen-3-yl)ethylidene)-N-phenylhydrazine-1-carbothioamide (CT) via an eco-friendly and green microwave-assisted protocol and…
Descriptors: Handheld Devices, Telecommunications, Educational Technology, College Science
Jinglin Fu; Anthony Monte Carlo; Doris Zheng – Journal of Chemical Education, 2025
The COVID-19 pandemic has accelerated the shift from traditional in-person teaching to remote and online learning, necessitating a more adaptable educational platform to serve the diverse needs of students. Transforming hands-on "wet lab" activities into virtual "dry lab" exercises can promote a more accessible and flexible…
Descriptors: Undergraduate Students, College Science, Science Education, Biochemistry
Vergne, Matthew J.; Smith, J. Dominic; Bowen, Ryan S. – Journal of Chemical Education, 2020
An online virtual escape-room game was created using the Google Forms survey app for an undergraduate chemistry lab class. Zoom video conferencing service was used to make the activity a collaborative learning experience. The theme was an escape from an abandoned chocolate factory, and the students solved problems to move to the next section or…
Descriptors: Undergraduate Students, College Science, Chemistry, Distance Education
An, Jiwoo; Poly, Laila-Parvin; Holme, Thomas A. – Journal of Chemical Education, 2020
In general chemistry laboratories, students learn practical laboratory skills through hands-on activities and are exposed to new scientific instruments. However, these instruments are often viewed as black boxes for various reasons, where students do not know how to use them or what the instruments are capable of. This tendency is likely to induce…
Descriptors: Usability, Chemistry, Science Laboratories, Science Equipment
Hensiek, Sarah; DeKorver, Brittland K.; Harwood, Cynthia J.; Fish, Jason; O'Shea, Kevin; Towns, Marcy – Journal of Chemical Education, 2016
Building on previous success with a digital pipet badge, an evidence-centered design approach was used to develop new digital badges for measuring the volume of liquids with a buret and making a solution in a volumetric flask. These badges were implemented and assessed in two general chemistry courses. To earn the badges, students created videos…
Descriptors: Chemistry, Science Instruction, Technology Uses in Education, Educational Technology
Shi, Wei-Zhao; Sun, Jiajun; Xu, Chong; Huan, Weiliang – EURASIA Journal of Mathematics, Science & Technology Education, 2016
In this study, smartphone was used to alter the traditional procedure by involving students in active learning experiences prior to the laboratory meeting. The researcher surveyed students' view on the effect of using smartphone to enhance learning in the general physics laboratory. The use of smartphone was evaluated by having 120 students who…
Descriptors: Telecommunications, Handheld Devices, Technology Uses in Education, Active Learning
Peer reviewedChlad, Frank L.; Hardy, James K. – Journal of Chemical Education, 1983
Safety procedures used by Department of Chemistry at the University of Akron are discussed. These include policy that no chemicals are stored in the teaching laboratories. Instead, dispensing stockrooms are used to service the laboratories. Other aspects discussed include ventilation procedures and development of microprocessor use in stockrooms.…
Descriptors: Chemistry, College Science, Computer Oriented Programs, Computer Programs
Peer reviewedConner, Wm. Curtis, Jr. – Chemical Engineering Education, 1990
Describes the conversion of a laboratory and change in course content in a chemical engineering curriculum. Lists laboratory experiments and computer programs used in the course. Discusses difficulties during the laboratory conversion and future plans for the course. (YP)
Descriptors: Chemical Engineering, College Science, Computer Oriented Programs, Computer Software
Peer reviewedEbeling, Ruth E. – Journal of College Science Teaching, 1988
Explains a method for keeping track of chemicals, supplies, and equipment by using a computer. Describes stockroom personnel, department needs, the physical plant, restocking procedures, file setup, and effectiveness of the program. Examples of sample inventory forms are included. (RT)
Descriptors: College Science, Computer Oriented Programs, Computer Uses in Education, Equipment Storage
Peer reviewedGeller, Kenneth N.; Newstein, Herman – American Journal of Physics, 1972
Experiments are designed with application to phenomena of the real world for use in a third-quarter introductory college physics course in wave motion, sound, and light. The computer is used to process and analyze experimental data and to extend experimental observations through simulation. (Author/TS)
Descriptors: Acoustics, College Science, Computer Oriented Programs, Course Descriptions
Peer reviewedBron, W. E. – American Journal of Physics, 1972
Describes material used in a first semester introductory physics laboratory for nonscience majors. The computer is used for data manipulation and in some cases, computer programs allow simulation of experiments with the possibility of altering values of parameters or experimental details. (Author/TS)
Descriptors: College Science, Computer Assisted Instruction, Computer Oriented Programs, Course Descriptions
Jemian, Wartan A. – Journal of Engineering Education, 1971
Descriptors: College Science, Computer Assisted Instruction, Computer Oriented Programs, Computer Programs
Peer reviewedDoane, Lawrence M.; And Others – Journal of Chemical Education, 1979
Explains two approaches to the automatic arrest of a potentiometric titration. (SA)
Descriptors: Chemical Analysis, College Science, Computer Assisted Instruction, Computer Oriented Programs

Direct link
