Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 2 |
Descriptor
Chemical Engineering | 5 |
College Science | 5 |
Computer Simulation | 5 |
Computer Uses in Education | 3 |
Higher Education | 3 |
Chemistry | 2 |
Educational Technology | 2 |
Engineering | 2 |
Science Education | 2 |
Teaching Methods | 2 |
Undergraduate Study | 2 |
More ▼ |
Author
Publication Type
Journal Articles | 5 |
Reports - Descriptive | 4 |
Guides - Classroom - Teacher | 1 |
Reports - Research | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Audience
Practitioners | 1 |
Researchers | 1 |
Location
United Arab Emirates | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Barrett, Rainier; Gandhi, Heta A.; Naganathan, Anusha; Daniels, Danielle; Zhang, Yang; Onwunaka, Chibueze; Luehmann, April; White, Andrew D. – Journal of Chemical Education, 2018
Undergraduate lab sessions play a crucial role in building and reinforcing conceptual understanding in STEM education. In third and fourth year higher education, lab sessions can be challenging to incorporate into the curriculum due to cost, safety, or difficulty in realizing abstract concepts. Mixed reality (MR) systems provide a novel solution…
Descriptors: Undergraduate Study, College Science, Science Laboratories, Chemistry
Alnaizy, Raafat; Abdel-Jabbar, Nabil; Ibrahim, Taleb H.; Husseini, Ghaleb A. – Chemical Engineering Education, 2014
Introductions of computer-aided software and simulators are implemented during the sophomore-year of the chemical engineering (ChE) curriculum at the American University of Sharjah (AUS). Our faculty concurs that software integration within the curriculum is beneficial to our students, as evidenced by the positive feedback received from industry…
Descriptors: Computer Software, Computer Simulation, College Science, Chemical Engineering

Sandler, Stanley I. – Chemical Engineering Education, 1990
Presents a framework identifying the molecular level assumptions underlying many thermodynamic models. Tests the assumptions using theory and computer simulation to develop better assumptions. (YP)
Descriptors: Chemical Engineering, College Science, Computer Simulation, Engineering

Schultheisz, Daniel; Sommerfeld, Jude T. – Chemical Engineering Education, 1988
Gives examples, descriptions, and uses for various types of simulation systems, including the Flowtran, Process, Aspen Plus, Design II, GPSS, Simula, and Simscript. Explains similarities in simulators, terminology, and a batch chemical process. Tables and diagrams are included. (RT)
Descriptors: Chemical Engineering, College Science, Computer Simulation, Computer Uses in Education

Frey, Douglas D. – Chemical Engineering Education, 1990
Illustrated is the use of spreadsheet programs for implementing finite difference numerical simulations of chromatography as an instructional tool in a separations course. Discussed are differential equations, discretization and integration, spreadsheet development, computer requirements, and typical simulation results. (CW)
Descriptors: Chemical Engineering, Chemistry, College Science, Computer Simulation