NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Theilmann, Florian – Physics Education, 2022
Ever since Newton's groundbreaking work on the composed nature of light, additive colour mixing (and its laws) are subject to the interest of physicists as well as other sciences. In this paper, we present a setup for simple lab or home experiments on additive colour mixing and the laws of colour mixing. Students use the screen of a laptop or…
Descriptors: Science Instruction, Science Experiments, Hands on Science, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Zhdanov, Arsenii; Pyay, Anna – Physics Teacher, 2022
Mobile phones are a widely used platform for educational apps, mobile health, and a variety of chemical tests. Here, we are working on a mobile phone-based physics lab (mPhysics) that uses a mobile phone's capabilities to run simple physics experiments and demonstrations. While a mobile phone can be used to analyze magnetic and optical properties…
Descriptors: Telecommunications, Handheld Devices, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Garrido-Gonza´lez, Jose´ J.; Trillo-Alcala´, María; Sa´nchez-Arroyo, Antonio J. – Journal of Chemical Education, 2018
The generation of secondary colors in digital devices by means of the additive red, green, and blue color model (RGB) can be a valuable way to introduce students to the basics of spectroscopy. This work has been focused on the spectral separation of secondary colors of light emitted by a computer screen into red, green, and blue bands, and how the…
Descriptors: Science Instruction, Spectroscopy, Color, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Mottishaw, Jeffery D.; Erck, Adam R.; Kramer, Jordan H.; Sun, Haoran; Koppang, Miles – Journal of Chemical Education, 2015
Frederick Sanger's early work on protein sequencing through the use of colorimetric labeling combined with liquid chromatography involves an important nucleophilic aromatic substitution (S[subscript N]Ar) reaction in which the N-terminus of a protein is tagged with Sanger's reagent. Understanding the inherent differences between this S[subscript…
Descriptors: Science Instruction, Organic Chemistry, College Science, Computer Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Miller, Jon S.; Windelborn, Augden F. – Physics Education, 2013
The activities described here allow students to explore the concept of diffusion with the use of common equipment such as computers, webcams and analysis software. The procedure includes taking a series of digital pictures of a container of water with a webcam as a dye slowly diffuses. At known time points, measurements of the pixel densities…
Descriptors: Science Instruction, Scientific Concepts, Educational Technology, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Olympiou, Georgios; Zacharia, Zacharias C. – Science Education, 2012
This study aimed to investigate the effect of experimenting with physical manipulatives (PM), virtual manipulatives (VM), and a blended combination of PM and VM on undergraduate students' understanding of concepts in the domain of "Light and Color." A pre-post comparison study design was used for the purposes of this study that involved 70…
Descriptors: Concept Formation, Science Experiments, Science Laboratories, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Bardar, Erin M.; Brecher, Kenneth – Astronomy Education Review, 2008
In this article, we present an overview of a suite of light and spectroscopy education materials developed as part of Project LITE (Light Inquiry Through Experiments). We also present an analysis of how introductory college astronomy students using these Project LITE materials performed on the Light and Spectroscopy Concept Inventory (LSCI)…
Descriptors: Computer Assisted Instruction, Spectroscopy, Light, Science Instruction