NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)1
Since 2006 (last 20 years)5
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 209 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ulriksen, Lars; Holmegaard, Henriette T.; Madsen, Lene Møller – Higher Education: The International Journal of Higher Education Research, 2017
Research on students' transition, retention and experiences in science, technology, engineering and mathematics (STEM) has increasingly focused on identity formation and on students' integration in the study programmes. However, studies focusing on the role of the curriculum in this process at the level of higher education are scarce. The present…
Descriptors: Science Education, Engineering Education, Science Curriculum, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Bohigas, Xavier; Periago, Christina; Jaen, Xavier; Pejuan, Arcadi – Journal of Educational Multimedia and Hypermedia, 2011
We present the results of a study carried out with students in their second year of Industrial Engineering to find out students' levels of satisfaction concerning the use of simulation tools (in this case an applet was used) as a tool for helping students learn the topic of movement by charged particles within electrical and magnetic fields. The…
Descriptors: Physics, Science Education, Science Instruction, Science Curriculum
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Jia-chi; Kung, Shieh-shiuh; Sun, Yi-ming – Chemical Engineering Education, 2009
Yuan Ze University targeted Biomaterials Science and developed a curriculum related to Biotechnology, Biochemical Engineering, and Biomaterials for engineering students to cultivate talents for both engineering and biotechnology. After several years of operation, recruiting students has succeeded, and students are satisfied with the course design…
Descriptors: Engineering Education, Biotechnology, Chemical Engineering, Interdisciplinary Approach
Peer reviewed Peer reviewed
Direct linkDirect link
Nasr, Karim J.; Ramadan, Bassem H. – Journal of STEM Education: Innovations and Research, 2008
This paper presents the development and implementation of Problem-Based Learning (PBL) in an engineering thermodynamics course at Kettering University. In this project, the thermodynamics course was restructured as modules presenting practical applications first, whereas principles were introduced just-in-time and as encountered. Theoretical…
Descriptors: Problem Based Learning, Engineering, Engineering Education, Science Curriculum
Peer reviewed Peer reviewed
Direct linkDirect link
Harris, Andrew T. – Chemical Engineering Education, 2009
The University of Sydney has offered an undergraduate course in particle technology using a contemporary problem based learning (PBL) methodology since 2005. Student learning is developed through the solution of complex, open-ended problems drawn from modern chemical engineering practice. Two examples are presented; i) zero emission electricity…
Descriptors: Feedback (Response), Problem Based Learning, Course Evaluation, Foreign Countries
Peer reviewed Peer reviewed
Kybett, B. D. – Journal of Chemical Education, 1982
Discusses the relationship between molecular structure, intermolecular forces, and tensile strengths of a polymer and suggests that this is a logical way to introduce polymers into a general chemistry course. (Author/JN)
Descriptors: Chemistry, College Science, Engineering Education, Higher Education
Peer reviewed Peer reviewed
Alberti, N.; And Others – European Journal of Engineering Education, 1988
The essentials of an Italian degree in Management Engineering are described. Aspects such as engineers versus managers, educational curriculum and envisaged development of the course are discussed. (Author/YP)
Descriptors: College Science, Course Content, Engineering Education, Engineers
Peer reviewed Peer reviewed
Charrier, J. M. – Chemical Engineering Education, 1977
Describes an undergraduate/graduate course in polymer science engineering which stresses industrial implications. (SL)
Descriptors: Chemistry, College Science, Course Descriptions, Engineering
Heggen, Richard J. – Engineering Education, 1988
Reports on a survey of the undergraduate programs of 50 engineering schools which was designed to investigate the engineering curriculum with regard to core courses in statics and dynamics. Indicates that only about one-third of the schools require these courses. Argues for their return to the programs. (TW)
Descriptors: College Science, Engineering Education, Higher Education, National Surveys
Miller, Gerald E.; Hyman, William A. – Engineering Education, 1981
Describes the status of fluid mechanics courses in bioengineering curricula. A survey of institutions offering bioengineering degrees indicates that over half do not require fluid mechanics courses. Suggests increasing number of mechanics courses to increase the quality of bioengineering students and to prepare students for graduate work and more…
Descriptors: Biomechanics, College Science, Engineering Education, Fluid Mechanics
Peer reviewed Peer reviewed
Sundberg, Donald C.; Someshwar, Arun V. – Chemical Engineering Education, 1989
Describes the structure of an in-depth laboratory project chemical engineering. Provides modeling work to guide experimentation and experimental work on heat transfer analysis. Discusses the experimental results and evaluation of the project. (YP)
Descriptors: Chemical Engineering, College Science, Engineering Education, Laboratory Experiments
Peer reviewed Peer reviewed
Browning, D. R. – Physics Education, 1975
Urges that more applied science and technology be included in college science curricula. Reviews courses which are working toward this end, such as an engineering course which requires the student to spend a week in an industrial environment and to produce a report on his visit. (MLH)
Descriptors: College Science, Curriculum, Engineering, Engineering Education
Peer reviewed Peer reviewed
Woods, Donald R. – Chemical Engineering Education, 1977
Describes challenges to presenting a course in problem solving. (SL)
Descriptors: College Science, Engineering Education, Higher Education, Instruction
Peer reviewed Peer reviewed
Alley, Reuben E., Jr. – American Journal of Physics, 1972
Results from a survey of physics and engineering departments in 132 engineering colleges in the United States and Canada are discussed. Information considered includes course requirements and content, effectiveness of physics courses and laboratories, unnecessary duplication in engineering curriculum, communication problems between physics and…
Descriptors: College Science, Course Content, Engineering, Engineering Education
Peer reviewed Peer reviewed
Young, Jay A. – Journal of Chemical Education, 1981
Summarizes symposium proceedings and provides topic titles and speakers. An appendix lists useful periodicals and books describing the chemical industry. (CS)
Descriptors: Chemistry, College Science, Conferences, Engineering Education
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  14