Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 6 |
Descriptor
College Science | 77 |
Computer Graphics | 77 |
Science Instruction | 77 |
Higher Education | 53 |
Science Education | 51 |
Computer Uses in Education | 43 |
Teaching Methods | 37 |
Computer Assisted Instruction | 33 |
Chemistry | 31 |
Microcomputers | 20 |
Courseware | 18 |
More ▼ |
Source
Author
Publication Type
Education Level
Higher Education | 6 |
Postsecondary Education | 6 |
Audience
Practitioners | 38 |
Teachers | 17 |
Researchers | 6 |
Students | 2 |
Policymakers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Dhanush S. Bejjarapu; Yize Chen; Jiyan Xu; Eric Shaffer; Nishant Garg – Journal of Chemical Education, 2024
Recent advancements in computer graphics and hardware have driven the resurgence of virtual reality (VR). Past literature has reported the use of VR in education, especially for teaching spatially complex concepts. However, there are limited data available on the precise role of VR game design elements. In this study, we introduce a new VR game,…
Descriptors: Physical Sciences, Chemistry, Computer Simulation, Educational Games
Li, Yuguang C.; Melenbrink, Elizabeth L.; Cordonier, Guy J.; Boggs, Christopher; Khan, Anupama; Isaac, Morko Kwembur; Nkhonjera, Lameck Kabambalika; Bahati, David; Billinge, Simon J.; Haile, Sossina M.; Kreuter, Rodney A.; Crable, Robert M.; Mallouk, Thomas E. – Journal of Chemical Education, 2018
This paper presents a teaching kit that combines the fabrication of a low-cost microcontroller-based potentiostat and a LabVIEW-generated graphical user interface. The potentiostat enables undergraduate-level students to learn electroanalytical techniques and characterize energy conversion devices such as solar cells. The purpose of this teaching…
Descriptors: Computer Software, Chemistry, Science Instruction, Computer Graphics
Teplukhin, Alexander; Babikov, Dmitri – Journal of Chemical Education, 2015
In our three-dimensional world, one can plot, see, and comprehend a function of two variables at most, V(x,y). One cannot plot a function of three or more variables. For this reason, visualization of the potential energy function in its full dimensionality is impossible even for the smallest polyatomic molecules, such as triatomics. This creates…
Descriptors: Science Instruction, Visualization, Energy, College Science
Meyer, Scott C. – Journal of Chemical Education, 2015
An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…
Descriptors: College Science, Undergraduate Study, Science Laboratories, Science Experiments
Esteb, John J.; McNulty, LuAnne M.; Magers, John; Morgan, Paul; Wilson, Anne M. – Journal of Chemical Education, 2010
The ability to use computer-based technology is an essential skill set for students majoring in chemistry. This exercise details the introduction of appropriate uses for this technology in the organic chemistry series. The incorporation of chemically appropriate online resources (module 1), scientific databases (module 2), and the use of a…
Descriptors: Organic Chemistry, College Science, Science Instruction, Undergraduate Students
Dahmani, Hassen-Reda; Schneeberger, Patricia; Kramer, IJsbrand M. – CBE - Life Sciences Education, 2009
The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or…
Descriptors: Computer Graphics, Cytology, Undergraduate Students, Course Descriptions

Beech, Graham – International Journal of Mathematical Education in Science and Technology, 1974
This article includes the results of a survey on the use of computers in chemistry education in British polytechnics, and a discussion of this use in the United Kingdom, the United States, and elsewhere. The author advocates that chemistry students learn to use, but not necessarily program, computers. (SD)
Descriptors: Chemistry, College Science, Computer Graphics, Computers

Henderson, Giles – American Journal of Physics, 1980
Uses computer graphics and nonstationary, superposition wave functions to reveal the dynamic quantum trajectories of several molecular and electronic transitions. These methods are then coupled with classical electromagnetic theory to provide a conceptually clear picture of the emission process and emitted radiation localized in time and space.…
Descriptors: College Science, Computer Graphics, Higher Education, Nuclear Physics

McKenzie, John – Physics Education, 1976
Described is the use of computer graphics terminals to present diagrams relating to physics concepts. (SL)
Descriptors: College Science, Computer Assisted Instruction, Computer Graphics, Higher Education
Modell, H. I.; And Others – Physiologist, 1983
Discusses a revision of existing respiratory physiology simulations to promote active learning experiences for individual students. Computer graphics were added to aid student's conceptualization of the physiological system. Specific examples are provided, including those dealing with alveolar gas equations and effects of anatomic shunt flow on…
Descriptors: College Science, Computer Graphics, Computer Programs, Higher Education

Guglielmino, Rick; Boyce, Tom – Physics Teacher, 1989
Described is a physical pendulum experiment with variable pivot as an example of maximizing computer benefits in laboratory interfacing. The laboratory procedures using spreadsheet graphics package are discussed. A diagram of the pendulum, basic formulas, and theoretical curve is provided. (YP)
Descriptors: College Science, Computer Graphics, Computer Interfaces, Laboratory Experiments

Connolly, Walter C. – Physics Teacher, 1985
Procedures for displaying computer-generated text and graphics to a large audience are inexpensive when a Fresnel-mirror projector is used. Although small liquid-crystal displays (LCDs) can be easily projected, large LCDs require some modification (which is described). Other devices with LCD displays (oscilloscopes, televisions, and pulse-height…
Descriptors: College Science, Computer Graphics, Computer Oriented Programs, Higher Education

Carr, Bruce C., Ed. – Physics Today, 1976
Reviewed are recent developments and projects concerned with the utilization of computer graphic terminals in computer assisted instruction of undergraduate level physics. Programs at the University of California, Irvine, University of Illinois, and Dartmouth are reviewed. (SL)
Descriptors: College Science, Computer Assisted Instruction, Computer Graphics, Computer Science

Moore, John W., Ed. – Journal of Chemical Education, 1981
Presents 11 short descriptions on the applications of computers in chemistry classrooms and laboratories, including among others, using microcomputer graphics to teach quantum theory, a versatile and inexpensive instrument/computer interface, and a microcomputer-controlled scintillation spectrometer. (JN)
Descriptors: Chemistry, College Science, Computer Graphics, Computer Oriented Programs

Soltzberg, Leonard J. – Journal of Chemical Education, 1979
Surveys the current scene in computer graphics from the point of view of a chemistry educator. Discusses the scope of current applications of computer graphics in chemical education, and provides information about hardware and software systems to promote communication with vendors of computer graphics equipment. (HM)
Descriptors: Chemistry, College Science, Computer Graphics, Computer Programs