NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 245 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Inmaculada Ortiz Martín; Ángel Del Espino Pérez; Estefanía García Luque; Enrique Viguera Mínguez – Biochemistry and Molecular Biology Education, 2025
The great development of high-throughput molecular biology techniques and the consequent generation of massive data have made Bioinformatics essential for undergraduate Bioscience students. The importance of this scientific discipline is evidenced by the huge number of specialized publications, tools, and databases available. Training in…
Descriptors: Active Learning, Teaching Methods, Molecular Structure, Biology
Peer reviewed Peer reviewed
Direct linkDirect link
Weijie Zhou; Zhiyuan Xu; Junlong Zhao – Journal of Chemical Education, 2023
Understanding organic reaction mechanisms can be a challenging task for many undergraduate students, particularly those who are nonchemistry majors, despite the fact that organic chemistry is a mandatory course for numerous science and engineering undergraduate programs. The selectivity of a reaction is largely determined by the distribution and…
Descriptors: Organic Chemistry, Molecular Structure, College Science, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Praneet Prakash; Manoj Varma – Journal of Chemical Education, 2022
The field of biosensors is a burgeoning area of research and employs a large number of chemistry graduates. The impact of strip tests in detecting coronavirus was palpable during the recent COVID-19 pandemic and will further drive the biosensor industry. Despite their common usage, a coherent introduction to the basics of sensing remains missing…
Descriptors: Teaching Methods, Science Education, Scientific Concepts, Group Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Quang, Ngo Khoa – Physics Teacher, 2022
This article describes a simple way to introduce nanomaterials using the presence of carbon nanodots (CNDs) in widely available food. Budweiser® beer and Coca-Cola®, commercial foods that are commonly accessible, were utilized to demonstrate the optical property of nanoparticles. Specifically, green and violet laser pointers were employed for the…
Descriptors: Science Instruction, Food, Scientific Concepts, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Juan Torras – Journal of Chemical Education, 2023
Modeling an inter-ring torsional profile of a simple2,2'-bithiophenemolecule has been used to illustrate the main concepts associated with basic molecular modeling within an introductory course in a master's degree on computational modeling. The methodology proposed in the activity has been used to guide and train the student along the classical…
Descriptors: Chemistry, Molecular Structure, Models, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Juszczak, Laura J. – Journal of Chemical Education, 2021
One of the more difficult concepts introduced in the first-year undergraduate course, general chemistry, is that of chirality. Typically, left and right hands are the common, macroscopic objects of reference used to demonstrate the quality of being nonsuperimposable, followed by the use of a mirror and molecular models, to illustrate molecular…
Descriptors: Undergraduate Students, College Science, Scientific Concepts, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Dias, Lucas A. L.; Faria, Roberto B. – Journal of Chemical Education, 2020
The use of symmetry is widespread in chemistry, as it is used for predictions of the number of allowed and forbidden absorptions in electronic, vibrational, and rotational spectroscopies; for predictions of the combination of atomic orbitals to produce molecular orbitals; and in many other chemical applications. One critical step in these…
Descriptors: Science Instruction, Molecular Structure, Computer Software, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Murphy, Kevin V.; Turney, Justin M.; Schaefer, Henry F., III. – Journal of Chemical Education, 2018
Preceding even the Hartree-Fock method, molecular integrals are the very foundation upon which quantum chemical molecular modeling depends. Discussions of molecular integrals are normally found only in advanced and technical texts or articles. The objective of the present article is to provide less experienced readers, or students in a…
Descriptors: Teaching Methods, Molecular Structure, Chemistry, Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Meydan, Engin – Educational Policy Analysis and Strategic Research, 2020
Chemistry as a discipline in general incorporates abstract concepts, which should be visualized through experiment- and application-oriented methods. It is a well-known fact in Turkey that chemistry class offered by simple and traditional methods cannot be understood by students at a satisfactory level. Such chemical subjects as atoms, molecules,…
Descriptors: Chemistry, Science Instruction, Scientific Concepts, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Silverstein, Todd P.; Slade, Kristin – Journal of Chemical Education, 2019
Living cells are crowded. The presence of so many macromolecules packed into a confined environment affects the structure and function of biological components, and the kinetics and thermodynamics of biochemical reactions. In fact, crowding studies have already led to important biological insights, such as the existence of metabolons and other…
Descriptors: Science Instruction, College Science, Undergraduate Study, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Kurniawan, Oka; Koh, Li Ling Apple; Cheng, Jermaine Zhi Min Cheng; Pee, Maggie – Journal of Chemical Education, 2019
Integrating knowledge across disciplines has been shown to be a challenging, and yet it is a necessary skill that university students need to develop. Students who are able to connect different concepts, perspectives, and angles of a given topic are generally more engaged and have better understanding. However, designing lesson plans or…
Descriptors: Science Instruction, Chemistry, Interdisciplinary Approach, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Esselman, Brian J.; Block, Stephen B. – Journal of Chemical Education, 2019
The VSEPR model has well-established limitations in its ability to represent accurate molecular and electronic geometries of simple molecules, which can create a significant need for students to relearn structure and bonding concepts in organic chemistry. We present an alternate method for describing molecular geometries and electronic structures…
Descriptors: Science Instruction, College Science, Undergraduate Study, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Lim, Kieran F. – Teaching Science, 2019
The use of the valence-shell electron-pair repulsion (VSEPR) model is essential for understanding aspects of bonding, molecular dipoles, inorganic complex ions, isomerization and stereochemistry, the lock-and-key mechanism for enzyme activity, and many other ideas. This paper describes how different approaches can be used to help students learn…
Descriptors: Science Instruction, Teaching Methods, Molecular Structure, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Beck, Jordan P.; Muniz, Marc N.; Crickmore, Cassidy; Sizemore, Logan – Chemistry Education Research and Practice, 2020
Models that are used to predict and explain phenomena related to molecular vibration and rotation are ubiquitous in physical chemistry, and are of importance in many related fields. Yet, little work has been done to characterize student use and application of these models. We describe the results of a multi-year, multi-institutional qualitative…
Descriptors: Chemistry, Models, Science Instruction, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Graulich, Nicole; Hedtrich, Sebastian; Harzenetter, René – Chemistry Education Research and Practice, 2019
Learning to interpret organic structures not as an arrangement of lines and letters but, rather, as a representation of chemical entities is a challenge in organic chemistry. To successfully deal with the variety of molecules or mechanistic representations, a learner needs to understand how a representation depicts domain-specific information.…
Descriptors: Science Instruction, Organic Chemistry, Teaching Methods, Scientific Concepts
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  17