Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 10 |
Descriptor
Source
Grantee Submission | 10 |
Author
Bosch, Nigel | 2 |
McCarthy, Kathryn S. | 2 |
McNamara, Danielle S. | 2 |
Ahmed Ashraf Butt | 1 |
Albacete, Patricia | 1 |
Allen, Laura K. | 1 |
Balyan, Renu | 1 |
Bogdan Nicula | 1 |
Burstein, Jill | 1 |
Crues, R. Wes | 1 |
Danielle S. McNamara | 1 |
More ▼ |
Publication Type
Reports - Research | 8 |
Speeches/Meeting Papers | 6 |
Reports - Evaluative | 2 |
Journal Articles | 1 |
Education Level
Higher Education | 10 |
Postsecondary Education | 10 |
Elementary Education | 1 |
Grade 4 | 1 |
Grade 5 | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
More ▼ |
Audience
Location
Pennsylvania | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating

Yang Zhong; Mohamed Elaraby; Diane Litman; Ahmed Ashraf Butt; Muhsin Menekse – Grantee Submission, 2024
This paper introduces REFLECTSUMM, a novel summarization dataset specifically designed for summarizing students' reflective writing. The goal of REFLECTSUMM is to facilitate developing and evaluating novel summarization techniques tailored to real-world scenarios with little training data, with potential implications in the opinion summarization…
Descriptors: Documentation, Writing (Composition), Reflection, Metadata
Bogdan Nicula; Marilena Panaite; Tracy Arner; Renu Balyan; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2023
Self-explanation practice is an effective method to support students in better understanding complex texts. This study focuses on automatically assessing the comprehension strategies employed by readers while understanding STEM texts. Data from 3 datasets (N = 11,833) with self-explanations annotated on different comprehension strategies (i.e.,…
Descriptors: Reading Strategies, Reading Comprehension, Metacognition, STEM Education
McCaffrey, Daniel F.; Zhang, Mo; Burstein, Jill – Grantee Submission, 2022
Background: This exploratory writing analytics study uses argumentative writing samples from two performance contexts--standardized writing assessments and university English course writing assignments--to compare: (1) linguistic features in argumentative writing; and (2) relationships between linguistic characteristics and academic performance…
Descriptors: Persuasive Discourse, Academic Language, Writing (Composition), Academic Achievement
McCarthy, Kathryn S.; Allen, Laura K.; Hinze, Scott R. – Grantee Submission, 2020
Open-ended "constructed responses" promote deeper processing of course materials. Further, evaluation of these explanations can yield important information about students' cognition. This study examined how students' constructed responses, generated at different points during learning, relate to their later comprehension outcomes.…
Descriptors: Reading Comprehension, Prediction, Responses, College Students
Bosch, Nigel; Crues, R. Wes; Shaik, Najmuddin; Paquette, Luc – Grantee Submission, 2020
Online courses often include discussion forums, which provide a rich source of data to better understand and improve students' learning experiences. However, forum messages frequently contain private information that prevents researchers from analyzing these data. We present a method for discovering and redacting private information including…
Descriptors: Privacy, Discussion Groups, Asynchronous Communication, Methods
Huang, Eddie; Valdiviejas, Hannah; Bosch, Nigel – Grantee Submission, 2019
Metacognition is a valuable tool for learning, since it is closely related to self-regulation and awareness of one's own affect. However, methods for automatically detecting and studying metacognition are scarce. Thus, in this paper we describe an algorithm for automatic detection of metacognitive language in writing. We analyzed text from the…
Descriptors: Metacognition, Mathematics, Language Usage, Writing (Composition)
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2017
This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…
Descriptors: Artificial Intelligence, Natural Language Processing, Reading Comprehension, Literature
MacArthur, Charles A.; Jennings, Amanda; Philippakos, Zoi A. – Grantee Submission, 2018
The study developed a model of linguistic constructs to predict writing quality for college basic writers and analyzed how those constructs changed following instruction. Analysis used a corpus of argumentative essays from a quasi-experimental, instructional study with 252 students (MacArthur, Philippakos, & Ianetta, 2015) that found large…
Descriptors: College Students, Writing Skills, Writing Evaluation, Writing Achievement
Lipschultz, Michael; Litman, Diane; Katz, Sandra; Albacete, Patricia; Jordan, Pamela – Grantee Submission, 2014
Post-problem reflective tutorial dialogues between human tutors and students are examined to predict when the tutor changed the level of abstraction from the student's preceding turn (i.e., used more general terms or more specific terms); such changes correlate with learning. Prior work examined lexical changes in abstraction. In this work, we…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Semantics, Abstract Reasoning
Jacovina, Matthew E.; McNamara, Danielle S. – Grantee Submission, 2017
In this chapter, we describe several intelligent tutoring systems (ITSs) designed to support student literacy through reading comprehension and writing instruction and practice. Although adaptive instruction can be a powerful tool in the literacy domain, developing these technologies poses significant challenges. For example, evaluating the…
Descriptors: Intelligent Tutoring Systems, Literacy Education, Educational Technology, Technology Uses in Education