NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Domicián Máté; Judit T. Kiss; Mária Csernoch – Education and Information Technologies, 2025
The impact of cognitive biases, particularly biased self-assessment, on learning outcomes and decision-making in higher education is of great significance. This study delves into the confluence of cognitive biases and user experience in spreadsheet programming as a crucial IT skill across various academic disciplines. Through a quantitative…
Descriptors: Programming, Spreadsheets, Computer Science Education, STEM Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Melina Verger; Chunyang Fan; Sébastien Lallé; François Bouchet; Vanda Luengo – Journal of Educational Data Mining, 2024
Predictive student models are increasingly used in learning environments due to their ability to enhance educational outcomes and support stakeholders in making informed decisions. However, predictive models can be biased and produce unfair outcomes, leading to potential discrimination against certain individuals and harmful long-term…
Descriptors: Algorithms, Prediction, Bias, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Iria Estévez-Ayres; Patricia Callejo; Miguel Ángel Hombrados-Herrera; Carlos Alario-Hoyos; Carlos Delgado Kloos – International Journal of Artificial Intelligence in Education, 2025
The emergence of Large Language Models (LLMs) has marked a significant change in education. The appearance of these LLMs and their associated chatbots has yielded several advantages for both students and educators, including their use as teaching assistants for content creation or summarisation. This paper aims to evaluate the capacity of LLMs…
Descriptors: Artificial Intelligence, Natural Language Processing, Computer Mediated Communication, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Sa Li; Jingjing Dong – International Journal of Web-Based Learning and Teaching Technologies, 2024
In order to deeply analyze and evaluate the changes in the comprehensive quality of college students' sports dance, the overall idea of systematically evaluating the changes in the comprehensive quality of college students' sports dance was established. Firstly, this article uses the triangular fuzzy number method to measure the evaluation…
Descriptors: Dance Education, Teaching Methods, Evaluation Methods, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Van Petegem, Charlotte; Deconinck, Louise; Mourisse, Dieter; Maertens, Rien; Strijbol, Niko; Dhoedt, Bart; De Wever, Bram; Dawyndt, Peter; Mesuere, Bart – Journal of Educational Computing Research, 2023
We present a privacy-friendly early-detection framework to identify students at risk of failing in introductory programming courses at university. The framework was validated for two different courses with annual editions taken by higher education students (N = 2 080) and was found to be highly accurate and robust against variation in course…
Descriptors: Pass Fail Grading, At Risk Students, Introductory Courses, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hongxin Yan; Fuhua Lin; Kinshuk – Canadian Journal of Learning and Technology, 2024
Online higher education provides exceptional flexibility in learning but demands high self-regulated learning skills. The deficiency of self-regulated learning skills in many students highlights the need for support. This study introduces a confidence-based adaptive practicing system as an intelligent assessment and tutoring solution to enhance…
Descriptors: Self Management, Online Courses, Intelligent Tutoring Systems, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Daleiden, Patrick; Stefik, Andreas; Uesbeck, P. Merlin; Pedersen, Jan – ACM Transactions on Computing Education, 2020
There are many paradigms available to address the unique and complex problems introduced with parallel programming. These complexities have implications for computer science education as ubiquitous multi-core computers drive the need for programmers to understand parallelism. One major obstacle to student learning of parallel programming is that…
Descriptors: Randomized Controlled Trials, Performance Factors, Programming, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maaliw, Renato R. III; Ballera, Melvin A. – International Association for Development of the Information Society, 2017
The usage of data mining has dramatically increased over the past few years and the education sector is leveraging this field in order to analyze and gain intuitive knowledge in terms of the vast accumulated data within its confines. The primary objective of this study is to compare the results of different classification techniques such as Naïve…
Descriptors: Classification, Cognitive Style, Electronic Learning, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Stefik, Andreas; Siebert, Susanna – ACM Transactions on Computing Education, 2013
Recent studies in the literature have shown that syntax remains a significant barrier to novice computer science students in the field. While this syntax barrier is known to exist, whether and how it varies across programming languages has not been carefully investigated. For this article, we conducted four empirical studies on programming…
Descriptors: Programming Languages, Syntax, Computer Science Education, Novices
Heiner, Cecily; Zachary, Joseph L. – International Working Group on Educational Data Mining, 2009
Students in introductory programming classes often articulate their questions and information needs incompletely. Consequently, the automatic classification of student questions to provide automated tutorial responses is a challenging problem. This paper analyzes 411 questions from an introductory Java programming course by reducing the natural…
Descriptors: Classification, Questioning Techniques, Introductory Courses, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boyer, Kristy Elizabeth, Ed.; Yudelson, Michael, Ed. – International Educational Data Mining Society, 2018
The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of these, 23 were accepted as full papers and 37…
Descriptors: Data Collection, Data Analysis, Computer Science Education, Program Proposals