Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 16 |
Descriptor
Bayesian Statistics | 19 |
College Students | 19 |
Probability | 19 |
Foreign Countries | 7 |
Decision Making | 6 |
Statistical Analysis | 6 |
Inferences | 4 |
Models | 4 |
Classification | 3 |
Experiments | 3 |
Mathematics Instruction | 3 |
More ▼ |
Source
Author
Ahmad, Rodina Binti | 1 |
Ashby, F. Gregory | 1 |
Barnes, Tiffany | 1 |
Bes, Benedicte | 1 |
Brisson, Janie | 1 |
Brown, Scott D. | 1 |
Chi, Min | 1 |
Chow, Alan F. | 1 |
Cross, Jennifer Riedl | 1 |
Cross, Tracy L. | 1 |
Donkin, Chris | 1 |
More ▼ |
Publication Type
Journal Articles | 16 |
Reports - Research | 13 |
Reports - Evaluative | 4 |
Speeches/Meeting Papers | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 14 |
Postsecondary Education | 12 |
Adult Education | 1 |
Audience
Location
Australia | 1 |
California (Santa Barbara) | 1 |
Canada | 1 |
France | 1 |
Germany | 1 |
Indiana | 1 |
Iran | 1 |
Mexico | 1 |
Rhode Island | 1 |
Spain | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Salas-Rueda, Ricardo-Adan; Salas-Rueda, Erika-Patricia; Salas-Rueda, Rodrigo-David – Turkish Online Journal of Distance Education, 2021
This mixed research aims to design and implement the Web Application on Bayes' Theorem (WABT) in the Statistical Instrumentation for Business subject. WABT presents the procedure to calculate the probability of Bayes' Theorem through the simulation of data about the supply of products. Technology Acceptance Model (TAM), machine learning and data…
Descriptors: Bayesian Statistics, Probability, College Students, Business Administration Education
Mao, Ye; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2020
Modeling student learning processes is highly complex since it is influenced by many factors such as motivation and learning habits. The high volume of features and tools provided by computer-based learning environments confounds the task of tracking student knowledge even further. Deep Learning models such as Long-Short Term Memory (LSTMs) and…
Descriptors: Time, Models, Artificial Intelligence, Bayesian Statistics
Markovits, Henry; Brisson, Janie; de Chantal, Pier-Luc – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
One of the major debates concerning the nature of inferential reasoning is between counterexample-based theories such as mental model theory and probabilistic theories. This study looks at conclusion updating after the addition of statistical information to examine the hypothesis that deductive reasoning cannot be explained by probabilistic…
Descriptors: Logical Thinking, Theories, Bayesian Statistics, Probability
Ashby, F. Gregory; Vucovich, Lauren E. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly contingent on behavior if it remains difficult or impossible to predict even after learning is complete. Many studies have demonstrated that humans and nonhuman animals are highly sensitive to feedback contingency, but no known studies have examined how…
Descriptors: Feedback (Response), Classification, Learning Processes, Associative Learning
Nosofsky, Robert M.; Donkin, Chris – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
We report an experiment designed to provide a qualitative contrast between knowledge-limited versions of mixed-state and variable-resources (VR) models of visual change detection. The key data pattern is that observers often respond "same" on big-change trials, while simultaneously being able to discriminate between same and small-change…
Descriptors: Short Term Memory, Probability, Models, Prediction
Hooshyar, Danial; Ahmad, Rodina Binti; Yousefi, Moslem; Fathi, Moein; Horng, Shi-Jinn; Lim, Heuiseok – Innovations in Education and Teaching International, 2018
In learning systems and environment research, intelligent tutoring and personalisation are considered the two most important factors. An Intelligent Tutoring System can serve as an effective tool to improve problem-solving skills by simulating a human tutor's actions in implementing one-to-one adaptive and personalised teaching. Thus, in this…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Skill Development, Programming
Chow, Alan F.; Van Haneghan, James P. – Educational Studies in Mathematics, 2016
This study reports the results of a study examining how easily students are able to transfer frequency solutions to conditional probability problems to novel situations. University students studied either a problem solved using the traditional Bayes formula format or using a natural frequency (tree diagram) format. In addition, the example problem…
Descriptors: Probability, College Students, Mathematical Formulas, Bayesian Statistics
Jones, W. Paul – Educational and Psychological Measurement, 2014
A study in a university clinic/laboratory investigated adaptive Bayesian scaling as a supplement to interpretation of scores on the Mini-IPIP. A "probability of belonging" in categories of low, medium, or high on each of the Big Five traits was calculated after each item response and continued until all items had been used or until a…
Descriptors: Personality Traits, Personality Measures, Bayesian Statistics, Clinics
Mammadov, Sakhavat; Ward, Thomas J.; Cross, Jennifer Riedl; Cross, Tracy L. – Roeper Review, 2016
To date, in gifted education and related fields various conventional factor analytic and clustering techniques have been used extensively for investigation of the underlying structure of data. Latent profile analysis is a relatively new method in the field. In this article, we provide an introduction to latent profile analysis for gifted education…
Descriptors: Statistical Analysis, Academically Gifted, Factor Analysis, Multivariate Analysis
Bes, Benedicte; Sloman, Steven; Lucas, Christopher G.; Raufaste, Eric – Cognitive Science, 2012
The study tests the hypothesis that conditional probability judgments can be influenced by causal links between the target event and the evidence even when the statistical relations among variables are held constant. Three experiments varied the causal structure relating three variables and found that (a) the target event was perceived as more…
Descriptors: Statistical Inference, Probability, Correlation, Causal Models
Najafabadi, Maryam Omidi; Zamani, Maryam; Mirdamadi, Mehdi – Journal of Education for Business, 2016
The authors used Ajzen's theory of planned behavior and Shapero's entrepreneurial event model as well as entrepreneurial cognition theory to identify the relationship among entrepreneurial skills, self-efficacy, attitudes toward entrepreneurship, psychological traits, social norms, perceived desirability, social support, and entrepreneurial…
Descriptors: Models, Entrepreneurship, Agricultural Education, Intention
Hawkins, Guy; Brown, Scott D.; Steyvers, Mark; Wagenmakers, Eric-Jan – Cognitive Science, 2012
For decisions between many alternatives, the benchmark result is Hick's Law: that response time increases log-linearly with the number of choice alternatives. Even when Hick's Law is observed for response times, divergent results have been observed for error rates--sometimes error rates increase with the number of choice alternatives, and…
Descriptors: Bayesian Statistics, Reaction Time, Context Effect, Decision Making
Teaching an Application of Bayes' Rule for Legal Decision-Making: Measuring the Strength of Evidence
Satake, Eiki; Murray, Amy Vashlishan – Journal of Statistics Education, 2014
Although Bayesian methodology has become a powerful approach for describing uncertainty, it has largely been avoided in undergraduate statistics education. Here we demonstrate that one can present Bayes' Rule in the classroom through a hypothetical, yet realistic, legal scenario designed to spur the interests of students in introductory- and…
Descriptors: Bayesian Statistics, College Mathematics, Mathematics Instruction, Statistics
Hogarth, Robin M.; Soyer, Emre – Journal of Experimental Psychology: General, 2011
Recently, researchers have investigated differences in decision making based on description and experience. We address the issue of when experience-based judgments of probability are more accurate than are those based on description. If description is well understood ("transparent") and experience is misleading ("wicked"), it…
Descriptors: Foreign Countries, Graduate Students, College Students, Adults
Zwick, Rebecca; Lenaburg, Lubella – Journal of Educational and Behavioral Statistics, 2009
In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…
Descriptors: Classification, Bayesian Statistics, Network Analysis, Probability
Previous Page | Next Page ยป
Pages: 1 | 2