NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
What Works Clearinghouse Rating
Showing 1 to 15 of 34 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yürüm, Ozan Rasit; Taskaya-Temizel, Tugba; Yildirim, Soner – Education and Information Technologies, 2023
Video clickstream behaviors such as pause, forward, and backward offer great potential for educational data mining and learning analytics since students exhibit a significant amount of these behaviors in online courses. The purpose of this study is to investigate the predictive relationship between video clickstream behaviors and students' test…
Descriptors: Video Technology, Educational Technology, Learning Management Systems, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Cannistrà, Marta; Masci, Chiara; Ieva, Francesca; Agasisti, Tommaso; Paganoni, Anna Maria – Studies in Higher Education, 2022
This paper combines a theoretical-based model with a data-driven approach to develop an Early Warning System that detects students who are more likely to dropout. The model uses innovative multilevel statistical and machine learning methods. The paper demonstrates the validity of the approach by applying it to administrative data from a leading…
Descriptors: Dropouts, Potential Dropouts, Dropout Prevention, Dropout Characteristics
Peer reviewed Peer reviewed
Direct linkDirect link
Cano, Alberto; Leonard, John D. – IEEE Transactions on Learning Technologies, 2019
Early warning systems have been progressively implemented in higher education institutions to predict student performance. However, they usually fail at effectively integrating the many information sources available at universities to make more accurate and timely predictions, they often lack decision-making reasoning to motivate the reasons…
Descriptors: Progress Monitoring, At Risk Students, Disproportionate Representation, Underachievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Berens, Johannes; Schneider, Kerstin; Gortz, Simon; Oster, Simon; Burghoff, Julian – Journal of Educational Data Mining, 2019
To successfully reduce student attrition, it is imperative to understand what the underlying determinants of attrition are and which students are at risk of dropping out. We develop an early detection system (EDS) using administrative student data from a state and private university to predict student dropout as a basis for a targeted…
Descriptors: Risk Management, At Risk Students, Dropout Prevention, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Liao, Soohyun Nam; Zingaro, Daniel; Thai, Kevin; Alvarado, Christine; Griswold, William G.; Porter, Leo – ACM Transactions on Computing Education, 2019
As enrollments and class sizes in postsecondary institutions have increased, instructors have sought automated and lightweight means to identify students who are at risk of performing poorly in a course. This identification must be performed early enough in the term to allow instructors to assist those students before they fall irreparably behind.…
Descriptors: Prediction, Low Achievement, Tests, Scores
Ashton, Bryan; Taylor, Zach; Smith, Steve; Meghani, Sana; Pyka, Ryan – Trellis Company, 2020
The COVID-19 pandemic has thrust students, their support networks, and institutions of higher education toward a financial crisis. In response, the U.S. Senate signed the CARES Act into law, which provides institutions of higher education with $14 billion to support various campus functions. Within the CARES Act, the Senate allocated funding for…
Descriptors: COVID-19, Pandemics, Federal Aid, Federal Legislation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barros, Thiago M.; Souza Neto, Plácido A.; Silva, Ivanovitch; Guedes, Luiz Affonso – Education Sciences, 2019
Predicting school dropout rates is an important issue for the smooth execution of an educational system. This problem is solved by classifying students into two classes using educational activities related statistical datasets. One of the classes must identify the students who have the tendency to persist. The other class must identify the…
Descriptors: Predictor Variables, Models, Dropout Rate, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Schneider, Carol Geary – Change: The Magazine of Higher Learning, 2020
Equity is emerging as a new frontier in the student success movement. But it's not enough to tackle higher education's deep equity divides by looking only at markers such as persistence, transfer, course credits, and DWF grades. True equity accountability depends on clarity about the key components of a quality education, especially the kinds of…
Descriptors: Equal Education, Educational Quality, Higher Education, Educational Objectives
Peer reviewed Peer reviewed
Direct linkDirect link
Aguilar, Stephen J. – Journal of Research on Technology in Education, 2018
This qualitative study focuses on capturing students' understanding two visualizations often utilized by learning analytics-based educational technologies: bar graphs, and line graphs. It is framed by Achievement Goal Theory--a prominent theory of students' academic motivation--and utilizes interviews (n = 60) to investigate how students at risk…
Descriptors: Comparative Analysis, Visualization, At Risk Students, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Scholes, Vanessa – Educational Technology Research and Development, 2016
There are good reasons for higher education institutions to use learning analytics to risk-screen students. Institutions can use learning analytics to better predict which students are at greater risk of dropping out or failing, and use the statistics to treat "risky" students differently. This paper analyses this practice using…
Descriptors: Data Collection, Data Analysis, Educational Research, At Risk Students
Peer reviewed Peer reviewed
Direct linkDirect link
Cohen, Anat – Educational Technology Research and Development, 2017
Persistence in learning processes is perceived as a central value; therefore, dropouts from studies are a prime concern for educators. This study focuses on the quantitative analysis of data accumulated on 362 students in three academic course website log files in the disciplines of mathematics and statistics, in order to examine whether student…
Descriptors: Academic Persistence, Predictor Variables, Dropouts, At Risk Students
Miller, Cynthia; Cohen, Benjamin; Yang, Edith; Pellegrino, Lauren – MDRC, 2020
College students have a better chance of succeeding in school when they receive high-quality advising. High-quality advising, when characterized by frequent communications between advisers and students, early outreach to students showing signs of academic or nonacademic struggles, and personalized guidance that addresses individual student needs,…
Descriptors: College Students, Academic Advising, Technology Uses in Education, Faculty Advisers
Peer reviewed Peer reviewed
Direct linkDirect link
Beemer, Joshua; Spoon, Kelly; Fan, Juanjuan; Stronach, Jeanne; Frazee, James P.; Bohonak, Andrew J.; Levine, Richard A. – Journal of Statistics Education, 2018
Estimating the efficacy of different instructional modalities, techniques, and interventions is challenging because teaching style covaries with instructor, and the typical student only takes a course once. We introduce the individualized treatment effect (ITE) from analyses of personalized medicine as a means to quantify individual student…
Descriptors: Learning Modalities, Academic Achievement, Intervention, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Kelly, Nick; Montenegro, Maximiliano; Gonzalez, Carlos; Clasing, Paula; Sandoval, Augusto; Jara, Magdalena; Saurina, Elvira; Alarcón, Rosa – International Journal of Information and Learning Technology, 2017
Purpose: The purpose of this paper is to demonstrate the utility of combining event-centred and variable-centred approaches when analysing big data for higher education institutions. It uses a large, university-wide data set to demonstrate the methodology for this analysis by using the case study method. It presents empirical findings about…
Descriptors: Educational Research, Data Collection, Data Analysis, Units of Study
Peer reviewed Peer reviewed
PDF on ERIC Download full text
McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2016
Effective mining of data from online submission systems offers the potential to improve educational outcomes by identifying student habits and behaviours and their relationship with levels of achievement. In particular, it may assist in identifying students at risk of performing poorly, allowing for early intervention. In this paper we investigate…
Descriptors: Data Collection, Student Behavior, Academic Achievement, Correlation
Previous Page | Next Page »
Pages: 1  |  2  |  3