NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Howlin, Colm P.; Dziuban, Charles D. – International Educational Data Mining Society, 2019
Clustering of educational data allows similar students to be grouped, in either crisp or fuzzy sets, based on their similarities. Standard approaches are well suited to identifying common student behaviors; however, by design, they put much less emphasis on less common behaviors or outliers. The approach presented in this paper employs fuzzing…
Descriptors: Data Collection, Student Behavior, Learning Strategies, Feedback (Response)
Peer reviewed Peer reviewed
Rosenberg, Seymour; Kim, Moonja Park – Multivariate Behavioral Research, 1975
Compares two basic variants of the sorting method: single-sort and multiple sort. The nature of individual differences in sorting, as well as sex differences, were also investigated. Stimulus materials were the 15 mutually exclusive kinship terms selected by Wallace and Atkins (1960). (RC)
Descriptors: Classification, Cluster Analysis, Cluster Grouping, College Students
Luan, Jing – Online Submission, 2004
This explorative data mining project used distance based clustering algorithm to study 3 indicators, called OIndex, of student behavioral data and stabilized at a 6-cluster scenario following an exhaustive explorative study of 4, 5, and 6 cluster scenarios produced by K-Means and TwoStep algorithms. Using principles in data mining, the study…
Descriptors: Educational Strategies, Evaluation Methods, Student Behavior, College Students