NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Miedema, Daphne; Fletcher, George; Aivaloglou, Efthimia – ACM Transactions on Computing Education, 2023
Prior studies in the Computer Science education literature have illustrated that novices make many mistakes in composing SQL queries. Query formulation proves to be difficult for students. Only recently, some headway was made towards understanding why SQL leads to so many mistakes, by uncovering student misconceptions. In this article, we shed new…
Descriptors: Computer Science Education, Novices, Misconceptions, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Ronit Shmallo; Adi Katz – Computer Science Education, 2024
Background and Context: Gender research shows that women are better at reading comprehension. Other studies indicate a lower tendency in women to choose STEM professions. Since data modeling requires reading skills and also belongs in the areas of information systems and computer science (STEM professions), these findings provoked our curiosity.…
Descriptors: Gender Differences, Transfer of Training, Databases, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tsabari, Stav; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2023
Automatically identifying struggling students learning to program can assist teachers in providing timely and focused help. This work presents a new deep-learning language model for predicting "bug-fix-time", the expected duration between when a software bug occurs and the time it will be fixed by the student. Such information can guide…
Descriptors: College Students, Computer Science Education, Programming, Error Patterns
Velez, Martin – ProQuest LLC, 2019
Software is an integral part of our lives. It controls the cars we drive every day, the ships we send into space, and even our toasters. It is everywhere and we can easily download more. Software solves many real-world problems and satisfies many needs. Thus, unsurprisingly, there is a rising demand for software engineers to maintain existing…
Descriptors: Computer Science Education, Programming, Introductory Courses, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Taipalus, Toni; Siponen, Mikko; Vartiainen, Tero – ACM Transactions on Computing Education, 2018
SQL is taught in almost all university level database courses, yet SQL has received relatively little attention in educational research. In this study, we present a database management system independent categorization of SQL query errors that students make in an introductory database course. We base the categorization on previous literature,…
Descriptors: Programming Languages, Database Management Systems, Database Design, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Becker, Brett A.; Glanville, Graham; Iwashima, Ricardo; McDonnell, Claire; Goslin, Kyle; Mooney, Catherine – Computer Science Education, 2016
Programming is an essential skill that many computing students are expected to master. However, programming can be difficult to learn. Successfully interpreting compiler error messages (CEMs) is crucial for correcting errors and progressing toward success in programming. Yet these messages are often difficult to understand and pose a barrier to…
Descriptors: Computer Science Education, Programming, Novices, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Veerasamy, Ashok Kumar; D'Souza, Daryl; Laakso, Mikko-Jussi – Journal of Educational Technology Systems, 2016
This article presents a study aimed at examining the novice student answers in an introductory programming final e-exam to identify misconceptions and types of errors. Our study used the Delphi concept inventory to identify student misconceptions and skill, rule, and knowledge-based errors approach to identify the types of errors made by novices…
Descriptors: Computer Science Education, Programming, Novices, Misconceptions
Peer reviewed Peer reviewed
Direct linkDirect link
Nutbrown, Stephen; Higgins, Colin – Computer Science Education, 2016
This article explores the suitability of static analysis techniques based on the abstract syntax tree (AST) for the automated assessment of early/mid degree level programming. Focus is on fairness, timeliness and consistency of grades and feedback. Following investigation into manual marking practises, including a survey of markers, the assessment…
Descriptors: Programming, Grading, Evaluation Methods, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bringula, Rex P.; Manabat, Geecee Maybelline A.; Tolentino, Miguel Angelo A.; Torres, Edmon L. – World Journal of Education, 2012
This descriptive study determined which of the sources of errors would predict the errors committed by novice Java programmers. Descriptive statistics revealed that the respondents perceived that they committed the identified eighteen errors infrequently. Thought error was perceived to be the main source of error during the laboratory programming…
Descriptors: Error Patterns, Programming, Programming Languages, Predictor Variables
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Feng, Mingyu, Ed.; Käser, Tanja, Ed.; Talukdar, Partha, Ed. – International Educational Data Mining Society, 2023
The Indian Institute of Science is proud to host the fully in-person sixteenth iteration of the International Conference on Educational Data Mining (EDM) during July 11-14, 2023. EDM is the annual flagship conference of the International Educational Data Mining Society. The theme of this year's conference is "Educational data mining for…
Descriptors: Information Retrieval, Data Analysis, Computer Assisted Testing, Cheating
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boyer, Kristy Elizabeth, Ed.; Yudelson, Michael, Ed. – International Educational Data Mining Society, 2018
The 11th International Conference on Educational Data Mining (EDM 2018) is held under the auspices of the International Educational Data Mining Society at the Templeton Landing in Buffalo, New York. This year's EDM conference was highly competitive, with 145 long and short paper submissions. Of these, 23 were accepted as full papers and 37…
Descriptors: Data Collection, Data Analysis, Computer Science Education, Program Proposals
Peer reviewed Peer reviewed
Rath, Alex; Brown, David E. – Journal of Educational Computing Research, 1995
Presents a human-computer interaction (HCI) conceptions model designed to help in the understanding of the cognitive processes involved when college students learn to program computers. Examines syntactic and algorithmic HCI operational errors and reviews conceptions based on natural language reasoning, independent computer reasoning, and…
Descriptors: Cognitive Processes, College Students, Computers, Designers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jadud, Matthew C. – Computer Science Education, 2005
Syntactically correct code does not fall from the sky; the process that leads to a student's first executable program is not well understood. At the University of Kent we have begun to explore the "compilation behaviours" of novice programmers, or the behaviours that students exhibit while authoring code; in our initial study, we have…
Descriptors: Introductory Courses, Programming, Student Behavior, Educational Technology