NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 98 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yürüm, Ozan Rasit; Taskaya-Temizel, Tugba; Yildirim, Soner – Education and Information Technologies, 2023
Video clickstream behaviors such as pause, forward, and backward offer great potential for educational data mining and learning analytics since students exhibit a significant amount of these behaviors in online courses. The purpose of this study is to investigate the predictive relationship between video clickstream behaviors and students' test…
Descriptors: Video Technology, Educational Technology, Learning Management Systems, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Paterson, Kevin; Guerrero, Adam – Research in Higher Education Journal, 2023
Data from a moderately-selective state university in the Midwest is used to cross-examine the most appropriate data analytical techniques for predicting versus explaining college student persistence decisions. The current research provides an overview of the relative benefits of models specializing in prediction versus explanation with particular…
Descriptors: Prediction, Data Analysis, College Students, School Holding Power
Peer reviewed Peer reviewed
Direct linkDirect link
XinXiu Yang – International Journal of Information and Communication Technology Education, 2024
The objective of this work is to predict the employment rate of students based on the information in the SSM (student status management) in colleges and universities. Firstly, the relevant content of SSM is introduced. Secondly, the BP (Back Propagation) neural network, the LM (Levenberg Marquardt) algorithm, and the BR (Bayesian Regularization)…
Descriptors: Prediction, Employment Patterns, College Students, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Achmad Bisri; Supardi; Yayu Heryatun; Hunainah; Annisa Navira – Journal of Education and Learning (EduLearn), 2025
In the educational landscape, educational data mining has emerged as an indispensable tool for institutions seeking to deliver exceptional and high-quality education. However, education data revealed suboptimal academic performance among a significant portion of the student population, which consequently resulted in delayed graduation. This…
Descriptors: Data Analysis, Models, Academic Achievement, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Mohamed Zine; Fouzi Harrou; Mohammed Terbeche; Ying Sun – Education and Information Technologies, 2025
E-learning readiness (ELR) is critical for implementing digital education strategies, particularly in developing countries where online learning faces unique challenges. This study aims to provide a concise and actionable framework for assessing and predicting ELR in Algerian universities by combining the ADKAR model with advanced machine learning…
Descriptors: Electronic Learning, Learning Readiness, Artificial Intelligence, Organizational Change
Peer reviewed Peer reviewed
Direct linkDirect link
Andrea Zanellati; Stefano Pio Zingaro; Maurizio Gabbrielli – IEEE Transactions on Learning Technologies, 2024
Academic dropout remains a significant challenge for education systems, necessitating rigorous analysis and targeted interventions. This study employs machine learning techniques, specifically random forest (RF) and feature tokenizer transformer (FTT), to predict academic attrition. Utilizing a comprehensive dataset of over 40 000 students from an…
Descriptors: Dropouts, Dropout Characteristics, Potential Dropouts, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Kieu, Thinh; Luu, Phong; Yoon, Noah – Teaching Statistics: An International Journal for Teachers, 2020
College-level statistics courses emphasize the use of the coefficient of determination, R-squared, in evaluating a linear regression model: higher R-squared is better. This often gives students an impression that higher R-squared implies better predictability since textbooks tend to use sample data to support the theory and students rarely have an…
Descriptors: College Students, Statistics, Regression (Statistics), Investment
Peer reviewed Peer reviewed
Direct linkDirect link
Du, Xiaoming; Ge, Shilun; Wang, Nianxin – International Journal of Information and Communication Technology Education, 2022
In the context of education big data, it uses data mining and learning analysis technology to accurately predict and effectively intervene in learning. It is helpful to realize individualized teaching and individualized teaching. This research analyzes student life behavior data and learning behavior data. A model of student behavior…
Descriptors: Prediction, Data, Student Behavior, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
J. Bryan Osborne; Andrew S. I. D. Lang – Journal of Postsecondary Student Success, 2023
This paper describes a neural network model that can be used to detect at- risk students failing a particular course using only grade book data from a learning management system. By analyzing data extracted from the learning management system at the end of week 5, the model can predict with an accuracy of 88% whether the student will pass or fail…
Descriptors: Identification, At Risk Students, Learning Management Systems, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Van Duser, Kyle Eric; Tanabe, Clifton S. – Journal of College Student Retention: Research, Theory & Practice, 2021
This study employed propensity score matching and regression analysis to determine whether or not a retention scholarship pilot program at a mid-size public research university was effective at increasing first-year retention. The scholarship pilot did not require any application process for students but rather used a predictive logistic…
Descriptors: Prediction, Data Analysis, Student Financial Aid, School Holding Power
Peer reviewed Peer reviewed
Direct linkDirect link
Gontzis, Andreas F.; Kotsiantis, Sotiris; Panagiotakopoulos, Christos T.; Verykios, Vassilios S. – Interactive Learning Environments, 2022
Attrition is one of the main concerns in distance learning due to the impact on the incomes and institutions reputation. Timely identification of students at risk has high practical value in effective students' retention services. Big Data mining and machine learning methods are applied to manipulate, analyze and predict students' failure,…
Descriptors: Student Attrition, Distance Education, At Risk Students, Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Gkontzis, Andreas F.; Kotsiantis, Sotiris; Panagiotakopoulos, Christos T.; Verykios, Vassilios S. – Interactive Learning Environments, 2022
Attrition is one of the main concerns in distance learning due to the impact on the incomes and institutions reputation. Timely identification of students at risk has high practical value in effective students' retention services. Big Data mining and machine learning methods are applied to manipulate, analyze, and predict students' failure,…
Descriptors: Student Attrition, Distance Education, At Risk Students, Achievement
James Joseph Slizewski – ProQuest LLC, 2022
The purpose of the study was to investigate if commonly collected data correlates with student success at week eight of the first term for first time, full time, students. This is an ex-post facto study of student data. A Spearman's rho test was used to analyze the data for correlational analysis to determine if variables contained within…
Descriptors: Academic Achievement, Grade Point Average, Learner Engagement, Data
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Tonghui – Journal of Educators Online, 2023
The early detection of students' academic performance or final grades helps instructors prepare their online courses. In the Open University Learning Analytics Dataset, I found many online students clicked the course materials before the first day of class. This study aims to investigate how data mining models can use this student interaction data…
Descriptors: College Students, Online Courses, Academic Achievement, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cohausz, Lea; Tschalzev, Andrej; Bartelt, Christian; Stuckenschmidt, Heiner – International Educational Data Mining Society, 2023
Demographic features are commonly used in Educational Data Mining (EDM) research to predict at-risk students. Yet, the practice of using demographic features has to be considered extremely problematic due to the data's sensitive nature, but also because (historic and representation) biases likely exist in the training data, which leads to strong…
Descriptors: Information Retrieval, Data Processing, Pattern Recognition, Information Technology
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7