NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 59 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Paterson, Kevin; Guerrero, Adam – Research in Higher Education Journal, 2023
Data from a moderately-selective state university in the Midwest is used to cross-examine the most appropriate data analytical techniques for predicting versus explaining college student persistence decisions. The current research provides an overview of the relative benefits of models specializing in prediction versus explanation with particular…
Descriptors: Prediction, Data Analysis, College Students, School Holding Power
Peer reviewed Peer reviewed
Direct linkDirect link
XinXiu Yang – International Journal of Information and Communication Technology Education, 2024
The objective of this work is to predict the employment rate of students based on the information in the SSM (student status management) in colleges and universities. Firstly, the relevant content of SSM is introduced. Secondly, the BP (Back Propagation) neural network, the LM (Levenberg Marquardt) algorithm, and the BR (Bayesian Regularization)…
Descriptors: Prediction, Employment Patterns, College Students, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Achmad Bisri; Supardi; Yayu Heryatun; Hunainah; Annisa Navira – Journal of Education and Learning (EduLearn), 2025
In the educational landscape, educational data mining has emerged as an indispensable tool for institutions seeking to deliver exceptional and high-quality education. However, education data revealed suboptimal academic performance among a significant portion of the student population, which consequently resulted in delayed graduation. This…
Descriptors: Data Analysis, Models, Academic Achievement, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Mohamed Zine; Fouzi Harrou; Mohammed Terbeche; Ying Sun – Education and Information Technologies, 2025
E-learning readiness (ELR) is critical for implementing digital education strategies, particularly in developing countries where online learning faces unique challenges. This study aims to provide a concise and actionable framework for assessing and predicting ELR in Algerian universities by combining the ADKAR model with advanced machine learning…
Descriptors: Electronic Learning, Learning Readiness, Artificial Intelligence, Organizational Change
Peer reviewed Peer reviewed
PDF on ERIC Download full text
J. Bryan Osborne; Andrew S. I. D. Lang – Journal of Postsecondary Student Success, 2023
This paper describes a neural network model that can be used to detect at- risk students failing a particular course using only grade book data from a learning management system. By analyzing data extracted from the learning management system at the end of week 5, the model can predict with an accuracy of 88% whether the student will pass or fail…
Descriptors: Identification, At Risk Students, Learning Management Systems, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Van Duser, Kyle Eric; Tanabe, Clifton S. – Journal of College Student Retention: Research, Theory & Practice, 2021
This study employed propensity score matching and regression analysis to determine whether or not a retention scholarship pilot program at a mid-size public research university was effective at increasing first-year retention. The scholarship pilot did not require any application process for students but rather used a predictive logistic…
Descriptors: Prediction, Data Analysis, Student Financial Aid, School Holding Power
Peer reviewed Peer reviewed
Direct linkDirect link
Gontzis, Andreas F.; Kotsiantis, Sotiris; Panagiotakopoulos, Christos T.; Verykios, Vassilios S. – Interactive Learning Environments, 2022
Attrition is one of the main concerns in distance learning due to the impact on the incomes and institutions reputation. Timely identification of students at risk has high practical value in effective students' retention services. Big Data mining and machine learning methods are applied to manipulate, analyze and predict students' failure,…
Descriptors: Student Attrition, Distance Education, At Risk Students, Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Gkontzis, Andreas F.; Kotsiantis, Sotiris; Panagiotakopoulos, Christos T.; Verykios, Vassilios S. – Interactive Learning Environments, 2022
Attrition is one of the main concerns in distance learning due to the impact on the incomes and institutions reputation. Timely identification of students at risk has high practical value in effective students' retention services. Big Data mining and machine learning methods are applied to manipulate, analyze, and predict students' failure,…
Descriptors: Student Attrition, Distance Education, At Risk Students, Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Tonghui – Journal of Educators Online, 2023
The early detection of students' academic performance or final grades helps instructors prepare their online courses. In the Open University Learning Analytics Dataset, I found many online students clicked the course materials before the first day of class. This study aims to investigate how data mining models can use this student interaction data…
Descriptors: College Students, Online Courses, Academic Achievement, Data Analysis
Nazempour, Rezvan – ProQuest LLC, 2023
Educational Data Mining (EDM) is an emerging field that aims to better understand students' behavior patterns and learning environments by employing statistical and machine learning methods to analyze large repositories of educational data. Analysis of variable data in the early stages of a course might be used to develop a comprehensive…
Descriptors: Artificial Intelligence, Outcomes of Education, Electronic Learning, Educational Environment
Peer reviewed Peer reviewed
Direct linkDirect link
Polak, Julia; Cook, Dianne – Journal of Statistics and Data Science Education, 2021
Kaggle is a data modeling competition service, where participants compete to build a model with lower predictive error than other participants. Several years ago they released a simplified service that is ideal for instructors to run competitions in a classroom setting. This article describes the results of an experiment to determine if…
Descriptors: Artificial Intelligence, Data Analysis, Models, Competition
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Parapadakis, Dimitris – London Review of Education, 2020
The successes of using artificial intelligence (AI) in analysing large-scale data at a low cost make it an attractive tool for analysing student data to discover models that can inform decision makers in education. This article looks at the case of decision making from models of student satisfaction, using research on ten years (2008-17) of…
Descriptors: Artificial Intelligence, Prediction, Student Needs, Needs Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Thontirawong, Pipat; Chinchanachokchai, Sydney – Marketing Education Review, 2021
In the age of big data and analytics, it is important that students learn about artificial intelligence (AI) and machine learning (ML). Machine learning is a discipline that focuses on building a computer system that can improve itself using experience. ML models can be used to detect patterns from data and recommend strategic marketing actions.…
Descriptors: Marketing, Artificial Languages, Career Development, Time Management
Peer reviewed Peer reviewed
Direct linkDirect link
Aydogdu, Seyhmus – Education and Information Technologies, 2020
Prediction of student performance is one of the most important subjects of educational data mining. Artificial neural networks are seen to be an effective tool in predicting student performance in e-learning environments. In the studies carried out with artificial neural networks, performance predictions based on student scores are generally made,…
Descriptors: Prediction, Academic Achievement, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mahzoon, Mohammad Javad; Maher, Mary Lou; Eltayeby, Omar; Dou, Wenwen; Grace, Kazjon – Journal of Learning Analytics, 2018
Data models built for analyzing student data often obfuscate temporal relationships for reasons of simplicity, or to aid in generalization. We present a model based on temporal relationships of heterogeneous data as the basis for building predictive models. We show how within- and between-semester temporal patterns can provide insight into the…
Descriptors: Data Analysis, Learning, Models, Time
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4