Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 2 |
Descriptor
Author
Lee, Sik-Yum | 4 |
Song, Xin-Yuan | 4 |
Pan, Jun-Hao | 1 |
Xia, Ye-Mao | 1 |
Publication Type
Journal Articles | 4 |
Reports - Research | 2 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
Descriptors: Structural Equation Models, Bayesian Statistics, Comparative Analysis, Computation
Song, Xin-Yuan; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Structural equation models are widely appreciated in behavioral, social, and psychological research to model relations between latent constructs and manifest variables, and to control for measurement errors. Most applications of structural equation models are based on fully observed data that are independently distributed. However, hierarchical…
Descriptors: Psychological Studies, Life Satisfaction, Job Satisfaction, Structural Equation Models

Lee, Sik-Yum; Song, Xin-Yuan – Psychometrika, 2003
Proposed a new nonlinear structural equation model with fixed covariates to deal with some complicated substantive theory and developed a Bayesian path sampling procedure for model comparison. Illustrated the approach with an illustrative example using data from an international study. (SLD)
Descriptors: Bayesian Statistics, Comparative Analysis, Sampling, Structural Equation Models

Lee, Sik-Yum; Song, Xin-Yuan – Multivariate Behavioral Research, 2001
Demonstrates the use of the well-known Bayes factor in the Bayesian literature for hypothesis testing and model comparison in general two-level structural equation models. Shows that the proposed method is flexible and can be applied to situations with a wide variety of nonnested models. (SLD)
Descriptors: Bayesian Statistics, Comparative Analysis, Goodness of Fit, Hypothesis Testing